Laser & Optoelectronics Progress, Volume. 62, Issue 10, 1037006(2025)
Two-Stage Image Rain Removal Network Based on Dynamic Residual Diffusion
Fig. 1. Overall flowchart of proposed method. (a) Rain removal stage; (b) detail recovery stage
Fig. 5. Pseudocode for training and inference processes. (a) Training process; (b) inference process
Fig. 6. Detailed comparisons of rain removal effect of different methods tested on Rain100H dataset. (a) Rainy images; (b) JORDER; (c) RESCAN; (d) PReNet; (e) MPRNet; (f) DRSformer; (g) MFDNet; (h) ours; (i) ground truth
Fig. 7. Detailed comparisons of rain removal effect of different methods tested on real dataset. (a) Real rainy images; (b) DDN; (c) JORDER; (d) PReNet; (e) Syn2Real; (f) DRSformer; (g) MFDNet; (h) ours
Fig. 8. Detailed comparisons of rain removal effect of different methods tested on real dataset. (a) Real rainy images; (b) DDN; (c) JORDER; (d) PReNet; (e) Syn2Real; (f) DRSformer; (g) MFDNet; (h) ours
Fig. 9. Detailed comparisons of rain removal effect of different module ablation experiments. (a) Rain image; (b) real image; (c) baseline; (d) baseline+DAB; (e) baseline+DAB+cascade repair module; (f) baseline+DAB+ residual diffusion repair module; (g) visual image of repaired structure
|
|
|
|
Get Citation
Copy Citation Text
Yixin Yang, Xinjian Gao, Ye Ma, Jun Gao. Two-Stage Image Rain Removal Network Based on Dynamic Residual Diffusion[J]. Laser & Optoelectronics Progress, 2025, 62(10): 1037006
Category: Digital Image Processing
Received: Oct. 15, 2024
Accepted: Nov. 26, 2024
Published Online: Apr. 23, 2025
The Author Email:
CSTR:32186.14.LOP242104