Photonics Research, Volume. 9, Issue 8, 1462(2021)
Modifying light–matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber
[1] W. Vogel, D. Welsch. Quantum Optics(2006).
[2] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).
[3] S. M. Dutra. Cavity Quantum Electrodynamics(2004).
[4] P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, A. V. Zayats. Self-induced torque in hyperbolic metamaterials. Phys. Rev. Lett., 111, 036804(2013).
[5] P. Ginzburg. Cavity quantum electrodynamics in application to plasmonics and metamaterials. Rev. Phys., 1, 120-139(2016).
[6] B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. F. Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, W. D. Oliver. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature, 583, 775-779(2020).
[7] D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat. Phys., 3, 807-812(2007).
[8] L. A. van der Elst, L. A. van der Elst, M. G. Kurtoglu, T. Leffel, M. Zheng, A. Gumennik. Rapid fabrication of sterile medical nasopharyngeal swabs by stereolithography for widespread testing in a pandemic. Adv. Eng. Mater., 22, 2000759(2020).
[9] C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, O. Bang. Hybrid photonic-crystal fiber. Rev. Mod. Phys., 89, 045003(2017).
[10] A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, Y. Fink. All-in-fiber chemical sensing. Adv. Mater., 24, 6005-6009(2012).
[11] J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, J. M. Sánchez-Pena. Infiltrated photonic crystal fibers for sensing applications. Sensors, 18, 4263(2018).
[12] T. Ermatov, R. E. Noskov, A. A. Machnev, I. Gnusov, V. Atkin, E. N. Lazareva, S. V. German, S. S. Kosolobov, T. S. Zatsepin, O. V. Sergeeva, J. S. Skibina, P. Ginzburg, V. V. Tuchin, P. G. Lagoudakis, D. A. Gorin. Multispectral sensing of biological liquids with hollow-core microstructured optical fibres. Light Sci. Appl., 9, 173(2020).
[13] A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, P. St.J. Russell. Photonic crystal fibres for chemical sensing and photochemistry. Chem. Soc. Rev., 42, 8629-8648(2013).
[14] G. O. S. Williams, T. G. Euser, P. St.J. Russell, A. J. MacRobert, A. C. Jones. Highly sensitive luminescence detection of photosensitized singlet oxygen within photonic crystal fibers. ChemPhotoChem, 2, 616-621(2018).
[15] G. O. S. Williams, T. G. Euser, P. St.J. Russell, A. C. Jones. Spectrofluorimetry with attomole sensitivity in photonic crystal fibres. Methods Appl. Fluoresc., 1, 015003(2013).
[16] T. Ermatov, Y. V. Petrov, S. V. German, A. A. Zanishevskaya, A. A. Shuvalov, V. Atkin, A. Zakharevich, B. N. Khlebtsov, J. S. Skibina, P. Ginzburg, R. E. Noskov, V. V. Tuchin, D. A. Gorin. Microstructured optical waveguide-based endoscopic probe coated with silica submicron particles. Materials, 12, 1424(2019).
[17] R. E. Noskov, A. A. Zanishevskaya, A. A. Shuvalov, S. V. German, O. A. Inozemtseva, T. P. Kochergin, E. N. Lazareva, V. V. Tuchin, P. Ginzburg, J. S. Skibina, D. A. Gorin. Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. Opt. Express, 27, 9868-9878(2019).
[18] E. M. Purcell. Proceedings of the American physical society. Phys. Rev., 69, 37-38(1946).
[19] L. Novotny, B. Hecht. Principles of Nano-Optics(2006).
[20] A. N. Poddubny, P. Ginzburg, P. A. Belov, A. V. Zayats, Y. S. Kivshar. Tailoring and enhancing spontaneous two-photon emission using resonant plasmonic nanostructures. Phys. Rev. A, 86, 033826(2012).
[21] I. V. Iorsh, A. N. Poddubny, P. Ginzburg, P. A. Belov, Y. S. Kivshar. Compton-like polariton scattering in hyperbolic metamaterials. Phys. Rev. Lett., 114, 185501(2015).
[22] L. D. Landau, L. D. Landau, E. M. Lifshitz, E. M. Lifshitz. Chapter IX—The electromagnetic wave equations. Electrodynamics of Continuous Media, 8, 257-289(1984).
[23] A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, P. A. Belov. An antenna model for the Purcell effect. Sci. Rep., 5, 12956(2015).
[24] V. S. C. M. Rao, V. S. Manga, S. Hughes. Single quantum-dot Purcell factor and
[25] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).
[26] E. J. Allen, G. Ferranti, K. R. Rusimova, R. J. A. Francis-Jones, M. Azini, D. H. Mahler, T. C. Ralph, P. J. Mosley, J. C. F. Matthews. Passive, broadband, and low-frequency suppression of laser amplitude noise to the shot-noise limit using a hollow-core fiber. Phys. Rev. Appl., 12, 044073(2019).
[27] W. Belardi, J. C. Knight. Hollow antiresonant fibers with low bending loss. Opt. Express, 22, 10091-10096(2014).
[28] A. S. Kadochkin, I. I. Shishkin, A. S. Shalin, P. Ginzburg. Quantum sensing of motion in colloids via time-dependent Purcell effect. Laser Photon. Rev., 12, 1800042(2018).
[29] V. A. Podolskiy, P. Ginzburg, B. Wells, A. V. Zayats. Light emission in nonlocal plasmonic metamaterials. Faraday Discuss., 178, 61-70(2015).
[30] S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, X. Liu. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater., 6, 1701032(2018).
[31] X. Wang, M. Shoaib, X. Wang, X. Zhang, M. He, Z. Luo, W. Zheng, H. Li, T. Yang, X. Zhu, L. Ma, A. Pan. High-quality in-plane aligned CsPbX perovskite nanowire lasers with composition-dependent strong exciton-photon coupling. ACS Nano, 12, 6170-6178(2018).
[32] A. P. Pushkarev, V. I. Korolev, D. I. Markina, F. E. Komissarenko, A. Naujokaitis, A. Drabavičius, V. Pakštas, M. Franckevičius, S. A. Khubezhov, D. A. Sannikov, A. V. Zasedatelev, P. G. Lagoudakis, A. A. Zakhidov, S. V. Makarov. A few-minute synthesis of CsPbBr nanolasers with a high quality factor by spraying at ambient conditions. ACS Appl. Mater. Interfaces, 11, 1040-1048(2019).
[33] R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, L. M. Herz. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Func. Mater., 25, 6218-6227(2015).
[34] A. Sillen, Y. Engelborghs. The correct use of “average” fluorescence parameters. Photochem. Photobiol., 67, 475-486(1998).
[35] E. Fišerová, M. Kubala. Mean fluorescence lifetime and its error. J. Luminesc., 132, 2059-2064(2012).
[36] A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, A. V. Zayats. Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B, 92, 195127(2015).
[37] A. A. Bogdanov, A. S. Shalin, P. Ginzburg. Optical forces in nanorod metamaterial. Sci. Rep., 5, 15846(2015).
Get Citation
Copy Citation Text
Andrey A. Machnev, Anatoly P. Pushkarev, Pavel Tonkaev, Roman E. Noskov, Kristina R. Rusimova, Peter J. Mosley, Sergey V. Makarov, Pavel B. Ginzburg, Ivan I. Shishkin, "Modifying light–matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber," Photonics Res. 9, 1462 (2021)
Category: Optical and Photonic Materials
Received: Feb. 11, 2021
Accepted: May. 25, 2021
Published Online: Jul. 13, 2021
The Author Email: Andrey A. Machnev (a.machnev@gmail.com)