Chinese Journal of Lasers, Volume. 43, Issue 8, 802004(2016)

Calculation of Argon-Aluminum Interatomic Potential and Its Application in Molecular Dynamics Simulation of Femtosecond Laser Ablation

[in Chinese]1,2、*, [in Chinese]1, [in Chinese]2, and Shih Cheng-Yu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] Zhang Keyan. Phase transition speed research of metal material at laser irradiation medium strength[J]. Acta Physica Sinica, 2004, 53(6): 1815-1819.

    [3] [3] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Appl Phys Lett, 1998, 73(12): 1673-1675.

    [4] [4] Feng P, Zhang N, Wu H, et al. Effect of ambient air on femtosecond laser ablation of highly oriented pyrolytic graphite[J]. Opt Lett, 2015, 40(1): 17-20.

    [5] [5] Xue Qing, Wu Wenhui, Ye Yunxia, et al. Property degradation of GaAs/Ge solar cells after femtosecond laser irradiation[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041405.

    [6] [6] Haustrup N, O′connor G M. Impact of wavelength dependent thermo-elastic laser ablation mechanism on the generation of nanoparticles from thin gold films[J]. Appl Phys Lett, 2012, 101(26): 263107.

    [7] [7] Perrière J, Boulmer-Leborgne C, Benzerga R, et al. Nanoparticle formation by femtosecond laser ablation[J]. Journal of Physics D: Appl Phys, 2007, 40(22): 7069-7076.

    [8] [8] Feng Peipei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite[J]. Acta Physica Sinica, 2015, 64(21): 214201.

    [10] [10] Ren Huan, Wang Junbo, Qiu Rong, et al. Ultrafast dynamics of intense femtosecond laser ablation of silicon[J]. High Power Laser and Particle Beams, 2013, 24(12): 2787-2790.

    [12] [12] de Giacomo A, Dell′aglio M, Gaudiuso R, et al. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 78(1): 1-19.

    [13] [13] Amoruso S, Bruzzese R, Wang X, et al. Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere[J]. Appl Phys Lett, 2008, 92(4): 041503.

    [14] [14] Toth M, Straw M. Gas-assisted laser ablation: US8524139 B2[P]. 2013-09-03.

    [15] [15] Vorobyev A Y, Guo C. Nanochemical effects in femtosecond laser ablation of metals[J]. Appl Phys Lett, 2013, 102(7): 074107.

    [16] [16] Kiani A, Patel N B, Tan B, et al. Leaf-like nanotips synthesized on femtosecond laser-irradiated dielectric material[J]. J Appl Phys, 2015, 117(7): 074306.

    [17] [17] Zhang Shudong, Chen Guanying, Liu Yanan, et al. Influence of the ambient pressure on velocity of emission particle of laser-ablated Al target[J]. Nuclear Physics Review, 2002, 19(2): 206-208.

    [20] [20] Wang Limei, Zeng Xinwu. Molecular dynamics simulation of 266 nm femtosecond laser ablation of monocrystalline silicon[J]. High Power Laser and Particle Beams, 2008, 20(8): 1360-1364.

    [21] [21] Chen Bing, Zhu Weihua, Chen Peng, et al. Mechanism of femtosecond laser ablating CuZr amorphous alloy[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041406.

    [22] [22] Li Chong, Zhang Jingchao, Wang Xinwei. Phase change and stress wave in picosecond laser-material interaction with shock wave formation[J]. Appl Phys A, 2013, 112(3): 677-687.

    [23] [23] Gacek S, Wang X. Dynamics evolution of shock waves in laser-material interaction[J]. Appl Phys A, 2008, 94(3): 675-690.

    [24] [24] Guo L, Wang X. Effect of molecular weight and density of ambient gas on shock wave in laser-induced surface nanostructuring[J]. Journal of Physics D: Applied Physics, 2009, 42(1): 015307.

    [25] [25] Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Phys Rev B, 2003, 68(6): 064114.

    [26] [26] Kornich G V, Betz G, Zaporojtchenko V, et al. Molecular dynamics simulations of interactions of Ar and Xe ions with surface Cu clusters at low impact energies[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 228(1-4): 41-45.

    [27] [27] Zhigilei L V, Lin Z, Ivanov D S. Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion[J]. Journal of Physical Chemistry C, 2009, 113(27): 11892-11906.

    [28] [28] Wu C, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Appl Phys A, 2013, 114(1): 11-32.

    [29] [29] Nakano H, Oguri K, Okano Y, et al. Dynamics of femtosecond-laser-ablated liquid-aluminum nanoparticles probed by means of spatiotemporally resolved X-ray absorption spectroscopy[J]. Appl Phys A, 2010, 101(3): 523-531.

    [30] [30] Ziegler J F, Biersack J, Littmark U. The stopping andrange of ions in solids[M]. Pergamon: New York, 1985.

    [31] [31] Lennard-Jones J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482.

    [32] [32] Stoddard S D, Ford J. Numerical experiments on the Stochastic behavior of a Lennard-Jones gas system[J]. Phys Rev A, 1973, 8(3): 1504-1512.

    [33] [33] Niu Wenxia, Zhang Hong. Ar adsorptions on Al (111) and Ir (111) surfaces: A first-principles study[J]. Chin Phys B, 2012, 21(2): 026802.

    [34] [34] Purja Pun G P, Mishin Y. Development of an interatomic potential for the Ni-Al system[J]. Philosophical Magazine, 2009, 89(34-36): 3245-3267.

    [35] [35] Zel′dovich Y B. Physics of shock waves and high-temperature hydrodynamic phenomena[M]. New York: Courier Corporation, 2002.

    [36] [36] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Oxford University Press, 1994.

    [37] [37] Miloshevsky A, Harilal S S, Miloshevsky G, et al. Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures[J]. Physics of Plasmas, 2014, 21(4): 043111.

    CLP Journals

    [1] Guan Kaimin, Liu Jinqiao, Xu Ying, Yu Yanhao. Efficient Pulsed Laser Ablation in Liquid Based on Microfluidic Technology[J]. Chinese Journal of Lasers, 2017, 44(4): 402006

    [2] Wang Ling, Wang Xingsheng, Li Ninghui, Kang Min. Processing of Microstructures on 304L Stainless Steel Surface Based on Long Pulse Laser[J]. Laser & Optoelectronics Progress, 2017, 54(3): 31402

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], Shih Cheng-Yu. Calculation of Argon-Aluminum Interatomic Potential and Its Application in Molecular Dynamics Simulation of Femtosecond Laser Ablation[J]. Chinese Journal of Lasers, 2016, 43(8): 802004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Feb. 18, 2016

    Accepted: --

    Published Online: Aug. 10, 2016

    The Author Email: (schmeichel1992@126.com)

    DOI:10.3788/cjl201643.0802004

    Topics