Journal of Infrared and Millimeter Waves, Volume. 44, Issue 2, 178(2025)

Quantitative Detection of water / ice in typical lunar minerals using Raman spectroscopy

Dao-Yuan-Tian WEN1,4, Hai-Ting ZHAO2, Xiang-Feng LIU2、*, Wei-Ming XU1,2、**, Xue-Sen XU1, Xin-Rui LEI3, and Rong SHU1,2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • 2Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • 4Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China
  • show less
    References(47)

    [1] Peale S J, Schubert G, Lingenfelter R E. Distribution of sinuous rilles and water on the Moon[J]. Nature, 220, 1222-1225(1968).

    [2] Lammer H, Lichtenegger H I M, Kolb C et al. Loss of water from Mars: Implications for the oxidation of the soil[J]. Icarus, 165, 9-25(2003).

    [3] Reiss P, Warren T, Sefton‐Nash E et al. Dynamics of subsurface migration of water on the Moon[J]. Journal of Geophysical Research: Planets, 126, e2020JE006742(2021).

    [4] Lin Y, Tronche E J, Steenstra E S et al. Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean[J]. Nature Geoscience, 10, 14-18(2017).

    [5] Starukhina L V, Shkuratov Y G. The lunar poles: Water ice or chemically trapped hydrogen?[J]. Icarus, 147, 585-587(2000).

    [6] Mukherjee N R, Siscoe G L. Possible sources of water on the Moon[J]. Journal of Geophysical Research, 78, 1741-1752(1973).

    [7] Saal A E, Hauri E H, Cascio M L et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior[J]. Nature, 454, 192-195(2008).

    [8] Hauri E H, Saal A E, Rutherford M J et al. Water in the Moon's interior: Truth and consequences[J]. Earth and Planetary Science Letters, 409, 252-264(2015).

    [9] Watson K, Murray B C, Brown H. The behavior of volatiles on the lunar surface[J]. Journal of Geophysical Research, 66, 3033-3045(1961).

    [10] Alexander C M O D, Bowden R, Fogel M L et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets[J]. Science, 337, 721-723(2012).

    [11] Andreasen R, Simmons S T, Righter M et al. Lutetium-hafnium and samarium-neodymium systematics of Apollo 17 Sample 78236: Age and the importance of thermal neutron fluence on the lutetium-hafnium system[C], 2887(2013).

    [12] Barnes J J, Franchi I A, Anand M et al. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS[J]. Chemical Geology, 337, 48-55(2013).

    [13] Barnes J J, Tartèse R, Anand M et al. Investigating the H 2 O content and H isotopic composition of the primitive lunar magma ocean (LMO) cumulates[C], 105(2013).

    [14] Bottke W F, Walker R J, Day J M D et al. Stochastic late accretion to Earth, the Moon, and Mars[J]. Science, 330, 1527-1530(2010).

    [15] Biswas J, Sheridan S, Pitcher C et al. Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout[J]. Planetary and Space Science, 181, 104826(2020).

    [16] Sowers G F. A cislunar transportation system fueled by lunar resources[J]. Space Policy, 37, 103-109(2016).

    [17] Auer B M, Skinner J L. IR and Raman spectra of liquid water: Theory and interpretation[J]. The Journal of Chemical Physics, 128(2008).

    [18] Nozette S, Lichtenberg C L, Spudis P et al. The Clementine bistatic radar experiment[J]. Science, 274, 1495-1498(1996).

    [19] Feldman W C, Maurice S, Binder A B et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles[J]. Science, 281, 1496-1500(1998).

    [20] Pieters C M, Goswami J N, Clark R N et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1[J]. Science, 326, 568-572(2009).

    [21] Li S, Lucey P G, Milliken R E et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences, 115, 8907-8912(2018).

    [22] Keller J W, Petro N E, Vondrak R R. The lunar reconnaissance orbiter mission–six years of science and exploration at the moon[J]. Icarus, 273, 2-24(2016).

    [23] Gladstone G R, Hurley D M, Retherford K D et al. LRO-LAMP observations of the LCROSS impact plume[J]. Science, 330, 472-476(2010).

    [24] Colaprete A, Schultz P, Heldmann J et al. Detection of water in the LCROSS ejecta plume[J]. Science, 330, 463-468(2010).

    [25] Creech S, Guidi J, Elburn D. Artemis: an overview of NASA's activities to return humans to the Moon[C], 1-7(2022).

    [26] Djachkova M V, Mitrofanov I G, Sanin A B et al. Selecting a landing site for the luna 27 spacecraft[J]. Solar System Research, 56, 145-154(2022).

    [27] Kanu N J, Gupta E, Verma G C. An insight into India's moon mission–Chandrayan-3: The first nation to land on the southernmost polar region of the Moon[J]. Planetary and Space Science, 105864(2024).

    [28] Wang C, Jia Y, Xue C et al. Scientific objectives and payload configuration of the Chang'E-7 mission[J]. National Science Review, 11, nwad329(2024).

    [29] Wang A, Jolliff B L, Haskin L A. Raman spectroscopy as a method for mineral identification on lunar robotic exploration missions[J]. Journal of Geophysical Research: Planets, 100, 21189-21199(1995).

    [30] Sharma S K, Angel S M, Ghosh M et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Applied Spectroscopy, 56, 699-705(2002).

    [31] Qi X, Ling Z, Liu P et al. Quantitative mineralogy of planetary silicate ternary mixtures using Raman spectroscopy[J]. Earth and Space Science, 10, e2023EA002825(2023).

    [32] Huang Z. Lunar mineral distribution[J]. Encyclopedia of Lunar Science, 1-4(2017).

    [33] Tompkins S, Pieters C M. Mineralogy of the lunar crust: Results from Clementine[J]. Meteoritics & Planetary Science, 34, 25-41(1999).

    [34] Slyuta E N. Physical and mechanical properties of the lunar soil (a review)[J]. Solar System Research, 48, 330-353(2014).

    [35] Zhang P, Dai W, Niu R et al. Overview of the lunar in situ resource utilization techniques for future lunar Missions[J]. Space: Science & Technology, 3, 0037(2023).

    [36] Sun Q. The Raman OH stretching bands of liquid water[J]. Vibrational Spectroscopy, 51, 213-217(2009).

    [37] Kawamoto T, Ochiai S, Kagi H. Changes in the structure of water deduced from the pressure dependence of the Raman OH frequency[J]. The Journal of Chemical Physics, 120, 5867-5870(2004).

    [38] Okada T, Komatsu K, Kawamoto T et al. Pressure response of Raman spectra of water and its implication to the change in hydrogen bond interaction[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2423-2427(2005).

    [39] Ponterio R C, Pochylski M, Aliotta F et al. Raman scattering measurements on a floating water bridge[J]. Journal of Physics D: Applied Physics, 43, 175405(2010).

    [40] Suzuki H, Matsuzaki Y, Muraoka A et al. Raman spectroscopy of optically levitated supercooled water droplet[J]. The Journal of Chemical Physics, 136(2012).

    [41] Sun Q. The Raman OH stretching bands of liquid water[J]. Vibrational Spectroscopy, 51, 213-217(2009).

    [42] Sun Q. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy[J]. The Journal of Chemical Physics, 132(2010).

    [43] Sivakumar T C, Schuh D, Sceats M G et al. The 2500–4000 cm- 1 Raman and infrared spectra of low density amorphous solid water and of polycrystalline ice I[J]. Chemical Physics Letters, 48, 212-218(1977).

    [44] Li R H, Jiang Z P. Effects of anions on OH stretching Raman spectra of water[J]. Acta Physico-Chimica Sinica, 23, 103-106(2007).

    [45] Larouche P, Max J J, Chapados C. Isotope effects in liquid water by infrared spectroscopy. II. Factor analysis of the temperature effect on H2O and D2O[J]. The Journal of Chemical Physics, 129(2008).

    [46] Lin K, Zhou X, Liu S et al. Identification of free OH and its implication on structural changes of liquid water[J]. Chinese Journal of Chemical Physics, 26, 121-127(2013).

    [47] Anand M, Tartèse R, Barnes J J. Understanding the origin and evolution of water in the Moon through lunar sample studies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130254(2014).

    Tools

    Get Citation

    Copy Citation Text

    Dao-Yuan-Tian WEN, Hai-Ting ZHAO, Xiang-Feng LIU, Wei-Ming XU, Xue-Sen XU, Xin-Rui LEI, Rong SHU. Quantitative Detection of water / ice in typical lunar minerals using Raman spectroscopy[J]. Journal of Infrared and Millimeter Waves, 2025, 44(2): 178

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Infrared Spectroscopy and Remote Sensing Technology

    Received: Jul. 17, 2024

    Accepted: --

    Published Online: Mar. 14, 2025

    The Author Email: Xiang-Feng LIU (xiangfeng_liu@163.com), Wei-Ming XU (xuwm@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2025.02.006

    Topics