Acta Optica Sinica, Volume. 44, Issue 6, 0628007(2024)
Phase Congruency Satellite Image Matching Method Based on Anisotropic Filtering
Fig. 2. Scale space construction. (a) Gaussian scale space; (b) nonlinear scale space
Fig. 3. Image blocks and maximum moment maps. (a) Original image blocks; (b) maximum moment maps
Fig. 4. Detection of feature points on maximum moment map. (a) Maximum moment map feature points of reference image block; (b) maximum moment map feature points of image block to be matched
Fig. 13. Matching results of experimental data of group A. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
Fig. 14. Matching results of experimental data of group B. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
Fig. 15. Matching results of experimental data of group C. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
Fig. 16. Matching results of experimental data of group D. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
Fig. 17. Matching results of experimental data of group E. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
Fig. 18. Matching results of experimental data of group F. (a) SIFT algorithm; (b) RIFT algorithm; (c) HAPCG algorithm; (d) proposed algorithm
|
|
|
|
Get Citation
Copy Citation Text
Qing Fu, Chen Guo, Wenlang Luo, Shikun Xie. Phase Congruency Satellite Image Matching Method Based on Anisotropic Filtering[J]. Acta Optica Sinica, 2024, 44(6): 0628007
Category: Remote Sensing and Sensors
Received: Nov. 2, 2023
Accepted: Jan. 5, 2024
Published Online: Mar. 19, 2024
The Author Email: Wenlang Luo (9920150045@jgsu.edu.cn)
CSTR:32393.14.AOS231728