Opto-Electronic Advances, Volume. 8, Issue 5, 240293(2025)
Spectrally extended line field optical coherence tomography angiography
[1] CYL Cheung, CheungCYL, IkramMK, al SabanayagamCet, MK Ikram, CheungCYL, IkramMK, al SabanayagamCet, C Sabanayagam et al. Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension, 60, 1094-1103(2012).
[2] HS Shi, ShiHS, KoronyoY, al FuchsDTet, Y Koronyo, ShiHS, KoronyoY, al FuchsDTet, DT Fuchs et al. Retinal capillary degeneration and blood-retinal barrier disruption in murine models of Alzheimer’s disease. Acta Neuropathol Commun, 8, 202(2020).
[3] AH Kashani, KashaniAH, ChenCL, al GahmJKet, CL Chen, KashaniAH, ChenCL, al GahmJKet, JK Gahm et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res, 60, 66-100(2017).
[4] RF Spaide, SpaideRF, FujimotoJG, al WaheedNKet, JG Fujimoto, SpaideRF, FujimotoJG, al WaheedNKet, NK Waheed et al. Optical coherence tomography angiography. Prog Retin Eye Res, 64, 1-55(2018).
[5] M Niederleithner, NiederleithnerM, L deSisternes, al StinoHet, Sisternes L de, NiederleithnerM, L deSisternes, al StinoHet, H Stino et al. Ultra-widefield OCT angiography. IEEE Trans Med Imaging, 42, 1009-1020(2023).
[6] DM Sampson, SampsonDM, DubisAM, al ChenFKet, AM Dubis, SampsonDM, DubisAM, al ChenFKet, FK Chen et al. Towards standardizing retinal optical coherence tomography angiography: a review. Light Sci Appl, 11, 63(2022).
[7] E Borrelli, BorrelliE, SarrafD, al FreundKBet, D Sarraf, BorrelliE, SarrafD, al FreundKBet, KB Freund et al. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res, 67, 30-55(2018).
[8] BJ Vakoc, VakocBJ, LanningRM, al TyrrellJAet, RM Lanning, VakocBJ, LanningRM, al TyrrellJAet, JA Tyrrell et al. Three-dimensional microscopy of the tumor microenvironment
[9] KC Liang, LiangKC, WangZ, al AhsenOOet, Z Wang, LiangKC, WangZ, al AhsenOOet, OO Ahsen et al. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography
[10] SS Gao, GaoSS, JiaYL, al ZhangMet, YL Jia, GaoSS, JiaYL, al ZhangMet, M Zhang et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci, 57, OCT27-OCT36(2016).
[11] J Ho, HoJ, DansK, Set YouQ, K Dans, HoJ, DansK, Set YouQ, Q S You et al. Comparison of 3 mm × 3 mm versus 6 mm × 6 mm optical coherence tomography angiography scan sizes in the evaluation of non-proliferative diabetic retinopathy. Retina, 39, 259-264(2019).
[12] W Choi, ChoiW, MoultEM, al WaheedNKet, EM Moult, ChoiW, MoultEM, al WaheedNKet, NK Waheed et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology, 122, 2532-2544(2015).
[13] SB Ploner, PlonerSB, MoultEM, al ChoiWet, EM Moult, PlonerSB, MoultEM, al ChoiWet, W Choi et al. Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina, 36, S118-S126(2016).
[14] B Braaf, BraafB, GräfeMGO, al Uribe-PatarroyoNet, MGO Gräfe, BraafB, GräfeMGO, al Uribe-PatarroyoNet, N Uribe-Patarroyo et al. OCT-based velocimetry for blood flow quantification. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, 161-179(2019).
[15] J Tokayer, TokayerJ, JiaYL, al DhallaAHet, YL Jia, TokayerJ, JiaYL, al DhallaAHet, AH Dhalla et al. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express, 4, 1909-1924(2013).
[16] JP Su, SuJP, ChandwaniR, al GaoSSet, R Chandwani, SuJP, ChandwaniR, al GaoSSet, SS Gao et al. Calibration of optical coherence tomography angiography with a microfluidic chip. J Biomed Opt, 21, 086015(2016).
[17] WJ Choi, ChoiWJ, QinW, al ChenCLet, W Qin, ChoiWJ, QinW, al ChenCLet, CL Chen et al. Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. Biomed Opt Express, 7, 2709-2728(2016).
[18] N Uribe-Patarroyo, Uribe-PatarroyoN, BoumaBE, BE Bouma. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating. Phys Rev E, 94, 022604(2016).
[19] N Uribe-Patarroyo, Uribe-PatarroyoN, VilligerM, BoumaBE, M Villiger, Uribe-PatarroyoN, VilligerM, BoumaBE, BE Bouma. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography. Opt Express, 22, 24411-24429(2014).
[20] MGO Gräfe, GräfeMGO, NadiarnykhO, JF DeBoer, O Nadiarnykh, GräfeMGO, NadiarnykhO, JF DeBoer, Boer JF De. Optical coherence tomography velocimetry based on decorrelation estimation of phasor pair ratios (DEPPAIR). Biomed Opt Express, 10, 5470-5485(2019).
[21] J Lee, LeeJ, WuWC, al JiangJYet, WC Wu, LeeJ, WuWC, al JiangJYet, JY Jiang et al. Dynamic light scattering optical coherence tomography. Opt Express, 20, 22262-22277(2012).
[22] T Durduran, DurduranT, ChoeR, al BakerWBet, R Choe, DurduranT, ChoeR, al BakerWBet, WB Baker et al. Diffuse optics for tissue monitoring and tomography. Rep Prog Phys, 73, 076701(2010).
[23] X Wei, WeiX, HormelTT, al PiSHet, TT Hormel, WeiX, HormelTT, al PiSHet, SH Pi et al. High dynamic range optical coherence tomography angiography (HDR-OCTA). Biomed Opt Express, 10, 3560-3571(2019).
[24] JL Yang, YangJL, SuJ, al WangJet, J Su, YangJL, SuJ, al WangJet, J Wang et al. Hematocrit dependence of flow signal in optical coherence tomography angiography. Biomed Opt Express, 8, 776-789(2017).
[25] B Braaf, BraafB, VermeerKA, al VienolaKVet, KA Vermeer, BraafB, VermeerKA, al VienolaKVet, KV Vienola et al. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. Opt Express, 20, 20516-20534(2012).
[26] B Karamata, KaramataB, LaubscherM, al LeuteneggerMet, M Laubscher, KaramataB, LaubscherM, al LeuteneggerMet, M Leutenegger et al. Multiple scattering in optical coherence tomography. I. Investigation and modeling. J Opt Soc Am A Opt Image Sci Vis, 22, 1369-1379(2005).
[27] Y Kaizu, KaizuY, NakaoS, al SodaTet, S Nakao, KaizuY, NakaoS, al SodaTet, T Soda et al. Longer interscan times in OCT angiography detect slower capillary flow in diabetic retinopathy. Ophthalmol Sci, 2, 100181(2022).
[28] LB Liu, LiuLB, GardeckiJA, al NadkarniSKet, JA Gardecki, LiuLB, GardeckiJA, al NadkarniSKet, SK Nadkarni et al. Imaging the subcellular structure of human coronary atherosclerosis using micro–optical coherence tomography. Nat Med, 17, 1010-1014(2011).
[29] S Chen, ChenS, LiuXY, al WangNSet, XY Liu, ChenS, LiuXY, al WangNSet, NS Wang et al. Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography. Sci Rep, 7, 10752(2017).
[30] J Yi, YiJ, LiuWZ, al ChenSYet, WZ Liu, YiJ, LiuWZ, al ChenSYet, SY Chen et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci Appl, 4, e334(2015).
[31] S Chen, ChenS, GeX, al LiuXYet, X Ge, ChenS, GeX, al LiuXYet, XY Liu et al. Understanding optical reflectance contrast for real-time characterization of epithelial precursor lesions. Bioeng Transl Med, 4, e10137(2019).
[32] A Couturier, CouturierA, ReyPA, al ErginayAet, PA Rey, CouturierA, ReyPA, al ErginayAet, A Erginay et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology, 126, 1685-1694(2019).
[33] AY Chen, ChenAY, LiuL, al WangJet, L Liu, ChenAY, LiuL, al WangJet, J Wang et al. Measuring glaucomatous focal perfusion loss in the peripapillary retina using OCT angiography. Ophthalmology, 127, 484-491(2020).
[34] DY Cui, CuiDY, LiuXY, al ZhangJet, XY Liu, CuiDY, LiuXY, al ZhangJet, J Zhang et al. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography
[35] RDS Shreesha, ShreeshaRDS, JensenM, al Grüner-NielsenLet, M Jensen, ShreeshaRDS, JensenM, al Grüner-NielsenLet, L Grüner-Nielsen et al. Shot-noise limited, supercontinuum-based optical coherence tomography. Light Sci Appl, 10, 133(2021).
[36] KC Liang, LiangKC, LiuXY, al ChenSet, XY Liu, LiangKC, LiuXY, al ChenSet, S Chen et al. Resolution enhancement and realistic speckle recovery with generative adversarial modeling of micro-optical coherence tomography. Biomed Opt Express, 11, 7236-7252(2020).
[37] JQ Hu et al. RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light Sci Appl, 13, 52(2024).
[38] X Ge, GeX, ChenS, al LinKet, S Chen, GeX, ChenS, al LinKet, K Lin et al. Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation. Opto-Electron Sci, 3, 230020(2024).
[39] International Electrotechnical Commission . Safety of laser products - Part 1: Equipment classification, requirements, and user’s guide. IEC 60825–1 Edition 1.2(2001).
[40] K Schulmeister, SchulmeisterK, GilberR, al SeiserBet, R Gilber, SchulmeisterK, GilberR, al SeiserBet, B Seiser et al. Retinal thermal laser damage thresholds for different beam profiles and scanned exposure. Proc SPIE, 6844, 68441L(2008).
[41] ANSI . American National Standard for safe use of lasers (ANSI136. 1). ANSI 136.1–2000(2000).
[42] SH Yun, YunSH, TearneyGJ, al BoumaBEet, GJ Tearney, YunSH, TearneyGJ, al BoumaBEet, BE Bouma et al. High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt Express, 11, 3598-3604(2003).
[43] R Leitgeb, LeitgebR, HitzenbergerCK, FercherAF, CK Hitzenberger, LeitgebR, HitzenbergerCK, FercherAF, AF Fercher. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express, 11, 889-894(2003).
[44] L An, AnL, WangRK, RK Wang.
[45] M Wojtkowski, WojtkowskiM, SrinivasanVJ, al KoTHet, VJ Srinivasan, WojtkowskiM, SrinivasanVJ, al KoTHet, TH Ko et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express, 12, 2404-2422(2004).
[46] JJ Vos. A theory of retinal burns. Bull Math Biophys, 24, 115-128(1962).
[47] JA Zuclich, ZuclichJA, LundDJ, al EdsallPRet, DJ Lund, ZuclichJA, LundDJ, al EdsallPRet, PR Edsall et al. Laser-induced retinal damage threshold as a function of retinal image size. Proc SPIE, 3591, 335-343(1999).
[48] ES Beatrice, BeatriceES, FrischGD, GD Frisch. Retinal laser damage thresholds as a function of image diameter. Arch Environ Health Int J, 27, 322-326(1973).
[49] ANSI . Z80.36–2021 for Light Hazard Protection for Ophthalmic Instruments(2021).
[50] YL Jia, JiaYL, TanO, al TokayerJet, O Tan, JiaYL, TanO, al TokayerJet, J Tokayer et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express, 20, 4710-4725(2012).
[51] AQ Zhang, ZhangAQ, ZhangQQ, al ChenCLet, QQ Zhang, ZhangAQ, ZhangQQ, al ChenCLet, CL Chen et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt, 20, 100901(2015).
[52] L An, AnL, QinJ, WangRK, J Qin, AnL, QinJ, WangRK, RK Wang. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt Express, 18, 8220-8228(2010).
[53] T Schmoll, SchmollT, BagheriniaH, RenHG, H Bagherinia, SchmollT, BagheriniaH, RenHG, HG Ren. OCTA flow signal enhancement by reducing residual structural signal. Invest Ophthalmol Visual Sci, 60, PB048(2019).
[54] D Richter, RichterD, FardAM, al StraubJet, AM Fard, RichterD, FardAM, al StraubJet, J Straub et al. Relative retinal flow velocity detection using optical coherence tomography angiography imaging. Biomed Opt Express, 11, 6710-6720(2020).
[55] ZD Chu, ChuZD, LinJ, al GaoCet, J Lin, ChuZD, LinJ, al GaoCet, C Gao et al. Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J Biomed Opt, 21, 66008(2016).
Get Citation
Copy Citation Text
Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu. Spectrally extended line field optical coherence tomography angiography[J]. Opto-Electronic Advances, 2025, 8(5): 240293
Received: Dec. 6, 2024
Accepted: Mar. 10, 2025
Published Online: Aug. 5, 2025
The Author Email: