Laser & Optoelectronics Progress, Volume. 59, Issue 12, 1215010(2022)

Fringe Segmentation Algorithm Based on Improved U-Net

Wenwei Yan1,2,3,4, Shuai Chen1,2,4、*, Baoyan Mu1,2,4, and Liang Gao1,2,4
Author Affiliations
  • 1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning , China
  • 2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, Liaoning , China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Key Laboratory on Intelligent Detection and Equipment Technology of Liaoning Province, Shenyang 110179, Liaoning , China
  • show less
    Figures & Tables(18)
    Image acquisition system
    Captured image
    Marked map
    Flow chart of image segmentation
    U-Net network
    Coordinate attention mechanism
    Pyramid pooling module
    VGG16 network
    Improved U-Net network
    Training loss value and accuracy value
    Validation loss value and accuracy value
    Segmentation results of different algorithms
    Fringe segmentation of improved U-Net algorithm in complex scene. (a) Original image; (b) ground true; (c) segmentation result of improved U-Net algorithm
    Extraction of light stripe feature points corresponding to stiffeners in different directions. (a) Feature point extraction of horizontal stiffener stripes; (b) feature point extraction of inclined stiffener stripes; (c) feature point extraction of vertical stiffener stripes
    Metal workpiece
    • Table 1. Index values of different algorithms

      View table

      Table 1. Index values of different algorithms

      AlgorithmmIoU /%mpa /%
      Tradition algorithm49.4372.68
      U-Net84.2893.59
      VGG16+U-Net84.3993.8
      Attention U-Net84.2994.45
      VGG16+ Attention U-Net86.5594.88
      PSPNet88.3294.95
      ENet87.3294.09
      Proposed algorithm89.7395.61
    • Table 2. Measurement results of stiffeners in different directions of metal workpiece

      View table

      Table 2. Measurement results of stiffeners in different directions of metal workpiece

      Measuring positionL /mml /mmΔ /mmε /%
      a10.029.95338-0.0666-0.665
      b9.989.91998-0.06002-0.601
      c9.969.91839-0.04161-0.418
      d10.009.92784-0.07216-0.722
    • Table 3. Repeatability measurement of stiffener at position a of metal workpiece

      View table

      Table 3. Repeatability measurement of stiffener at position a of metal workpiece

      Measuring positionnl /mmlave /mmσδ /%
      a19.953389.947650.013470.14
      29.93935
      39.96358
      49.93430
    Tools

    Get Citation

    Copy Citation Text

    Wenwei Yan, Shuai Chen, Baoyan Mu, Liang Gao. Fringe Segmentation Algorithm Based on Improved U-Net[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1215010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 8, 2021

    Accepted: Aug. 17, 2021

    Published Online: May. 23, 2022

    The Author Email: Shuai Chen (chenshuai@sia.cn)

    DOI:10.3788/LOP202259.1215010

    Topics