Frontiers of Optoelectronics, Volume. 14, Issue 4, 499(2021)

Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations

Xinran LI1, Yanhui LOU1、*, and Zhaokui WANG2
Author Affiliations
  • 1College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
  • 2Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
  • show less
    References(42)

    [1] [1] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y. Solar cell efficiency tables. Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12

    [2] [2] J?rgensen M, Norrman K, Gevorgyan S A, Tromholt T, Andreasen B, Krebs F C. Stability of polymer solar cells. Advanced Materials, 2012, 24(5): 580–612

    [3] [3] Kumar P, Chand S. Recent progress and future aspects of organic solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20(4): 377–415

    [4] [4] Kroon R, Lenes M, Hummelen J, Blom P, Boer B. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Reviews (Philadelphia, Pa.), 2008, 48(3): 531–582

    [5] [5] Dou L, You J, Yang J, Chen C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180– 185

    [6] [6] Honda S, Nogami T, Ohkita H, Benten H, Ito S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Applied Materials & Interfaces, 2009, 1(4): 804–810

    [7] [7] Suresh P, Balraju P, Sharma G D, Mikroyannidis J A, Stylianakis M M. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices. ACS Applied Materials & Interfaces, 2009, 1(7): 1370–1374

    [8] [8] ReeseMO, Nardes A, RupertMB L, Larsen R E, Olson D C, Lloyd M T, Shaheen S E, Ginley D S, Rumbles G, Kopidakis N. Photoinduced degradation of polymer and polymer–fullerene active layers: experiment and theory. Advanced Functional Materials, 2010, 20(20): 3476–3483

    [9] [9] bad J, Urbina A, Colchero J. Influence of UV radiation and ozone exposure on the electro-optical properties and nanoscale structure of P3OT films. Organic Electronics, 2011, 12(8): 1389–1398

    [10] [10] Krebs F C, Tromholt T, J?rgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010, 2 (6): 873–886

    [11] [11] Sch?fer S, Petersen A, Wagner T, Kniprath R, Lingenfelser D, Zen A, Kirchartz T, Zimmermann B, Würfel U, Feng X, Mayer T. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic smallmolecule solar cells. Physical Review B, 2011, 83(16): 165311

    [12] [12] Yu G, Gao J, Hummelen J,Wudl F, Heeger A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791

    [13] [13] Wang M, Tang Q, An J, Xie F, Chen J, Zheng S, Wong K, Miao Q, Xu J. Performance and stability improvement of P3HT:PCBMbased solar cells by thermally evaporated chromium oxide (CrOx) interfacial layer. ACS Applied Materials & Interfaces, 2010, 2(10): 2699–2702

    [14] [14] Hains A W, Liu J, Martinson A B F, Irwin M D, Marks T J. Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells. Advanced Functional Materials, 2010, 20(4): 595–606

    [15] [15] Xu M, Cui L, Zhu X, Gao C, Shi X, Jin Z,Wang Z, Liao L. Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14(2): 657–664

    [16] [16] Xu Z, Chen L, Yang G, Huang C, Hou J, Wu Y, Li G, Hsu C, Yang Y. Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Advanced Functional Materials, 2009, 19(8): 1227–1234

    [17] [17] Norrman K, Gevorgyan S A, Krebs F C.Water-induced degradation of polymer solar cells studied by H2 18O labeling. ACS Applied Materials & Interfaces, 2009, 1(1): 102–112

    [18] [18] Lira-Cantu M, Norrman K, Andreasen J, Krebs F. Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells. Chemistry of Materials, 2006, 18(24): 5684–5690

    [19] [19] Alstrup J, J?rgensen M, Medford A J, Krebs F C. Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Applied Materials & Interfaces, 2010, 2(10): 2819–2827

    [20] [20] von Malm N, Steiger J, Schmechel R, von Seggern H. Trap engineering in organic hole transport materials. Journal of Applied Physics, 2001, 89(10): 5559–5563

    [21] [21] Schmechel R, von Seggern H. Electronic traps in organic transport layers. Physica Status Solidi, 2004, 201(6): 1215–1235

    [22] [22] Graupner W, Leditzky G, Leising G, Scherf U. Shallow and deep traps in conjugated polymers of high intrachain order. Physical Review B, 1996, 54(11): 7610–7613

    [23] [23] Okachi T, Nagase T, Kobayashi T, Naito H. Determination of localized-state distributions in organic light-emitting diodes by impedance spectroscopy. Applied Physics Letters, 2009, 94(4): 043301

    [24] [24] Harada K, Riede M, Leo K, Hild O R, Elliott C M. Pentacene homojunctions: electron and hole transport properties and related photovoltaic responses. Physical Review B, 2008, 77(19): 195212

    [25] [25] Lou Y, Xu M, Zhang L, Wang Z, Naka S, Okada H, Liao L. Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Organic Electronics, 2013, 14(10): 2698–2704

    [26] [26] Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 2005, 86(26): 262108

    [27] [27] Würfel P, Trupke T, Puzzer T, Sch?ffer E, Warta W, Glunz S. Diffusion lengths of silicon solar cells from luminescence images. Journal of Applied Physics, 2007, 101(12): 123110

    [28] [28] Breitenstein O, Bauer J, Trupke T, Bardos R. On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 325–330

    [29] [29] Rau U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B, 2007, 76(8): 085303

    [30] [30] Cravino A, Leriche P, Aleveque O, Roquet S, Roncali J. Lightemitting organic solar cells based on a 3D conjugated system with internal charge transfer. Advanced Materials, 2006, 18(22): 3033– 3037

    [31] [31] Hoyer U, Wagner M, Swonke T, Bachmann J, Auer R, Osvet A, Brabec C. Electroluminescence imaging of organic photovoltaic modules. Applied Physics Letters, 2010, 97(23): 233303

    [32] [32] Tvingstedt K, Vandewal K, Gadisa A, Zhang F, Manca J, Ingan?s O. Electroluminescence from charge transfer states in polymer solar cells. Journal of the American Chemical Society, 2009, 131(33): 11819–11824

    [33] [33] Sun J, Zhu X, Peng H, Wong M, Kwok H. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Applied Physics Letters, 2005, 87(9): 093504

    [34] [34] Liao L, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004, 84(2): 167– 169

    [35] [35] Kanno H, Holmes R, Sun Y, Kena-Cohen S, Forrest S. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer. Advanced Materials, 2006, 18(3): 339–342

    [36] [36] Sun J, Zhu X, Peng H,Wong M, Kwok H. Bright and efficient white stacked organic light-emitting diodes. Organic Electronics, 2007, 8 (4): 305–310

    [37] [37] Hamwi S, Meyer J, Kr?ger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W. The role of transition metal oxides in chargegeneration layers for stacked organic light-emitting diodes. Advanced Functional Materials, 2010, 20(11): 1762–1766

    [38] [38] Tokito S, Noda K, Taga Y. Metal oxides as a hole-injecting layer for an organic electroluminescent device. Journal of Physics D, Applied Physics, 1996, 29(11): 2750–2753

    [39] [39] Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Advanced Materials, 2012, 24(18): 2459–2462

    [40] [40] Lou Y, Xu M, Wang Z, Naka S, Okada H, Liao L. Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge- separation functions in pentacene/C60 heterojunction organic solar cells. Applied Physics Letters, 2013, 102(11): 113305

    [41] [41] Morfa A, Rowlen K, Reilly T, Romero M, Lagemaat J. Plasmonenhanced solar energy conversion in organic bulk heterojunction photovoltaics. Applied Physics Letters, 2008, 92(1): 013504

    [42] [42] Xu M F, Zhu X Z, Shi X B, Liang J, Jin Y, Wang Z K, Liao L S. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution- processable TiO2 layer. ACS Applied Materials & Interfaces, 2013, 5(8): 2935–2942.

    Tools

    Get Citation

    Copy Citation Text

    Xinran LI, Yanhui LOU, Zhaokui WANG. Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations[J]. Frontiers of Optoelectronics, 2021, 14(4): 499

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Sep. 10, 2020

    Accepted: Nov. 1, 2020

    Published Online: Jan. 10, 2022

    The Author Email: Yanhui LOU (yhlou@suda.edu.cn)

    DOI:10.1007/s12200-020-1103-2

    Topics