Chinese Journal of Lasers, Volume. 49, Issue 9, 0903001(2022)

Design of Ultra-Broadband and High-Absorption Metamaterial Solar Absorber

Yang Wang1, Xuefei Xuan1, Lu Zhu2, Jiabing Zhu1、*, Xiaobo Shen1、**, Qiang Gao1, and Changjun Hu1
Author Affiliations
  • 1School of Electronic Engineering, Huainan Normal University, Huainan 232038, Anhui, China
  • 2School of Information Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China
  • show less
    References(32)

    [1] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Huang L, Chowdhury D R, Ramani S et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optics Letters, 37, 154-156(2012).

    [3] Wei W, Zhao Q, Shi X B. Preparation of gold nanoclusters by template method and applications in biomolecule biosensing[J]. Acta Laser Biology Sinica, 28, 296-304(2019).

    [4] Liu J, Chen W, Ma W Z et al. Ultra-broadband infrared absorbers using iron thin layers[J]. IEEE Access, 8, 43407-43412(2020).

    [5] Liu J, Chen W, Zheng J C et al. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 10, E27(2019).

    [6] Takatori K, Okamoto T, Ishibashi K. Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range[J]. Optics Express, 26, 1342-1350(2018).

    [7] Liu Z M, Gao E D, Zhang X et al. Terahertz electro-optical multi-functional modulator and its coupling mechanisms based on upper-layer double graphene ribbons and lower-layer a graphene strip[J]. New Journal of Physics, 22, 053039(2020).

    [8] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [9] Huang Y Q, Li Y, Li Z P et al. Tunable mid-infrared broadband absorber based on W/VO2 square nano-pillar array[J]. Acta Optica Sinica, 39, 0316001(2019).

    [10] Meng Q L, Zhang Y, Zhang B et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber[J]. Laser & Optoelectronics Progress, 56, 101603(2019).

    [11] Chen X, Xue W R, Zhao C et al. Ultra-broadband infrared absorber based on LiF and NaF[J]. Acta Optica Sinica, 38, 0123002(2018).

    [12] Yang S, Yuan S, Wang J Y. A light-excited switchable terahertz dual-band metamaterial absorber[J]. Acta Optica Sinica, 41, 0216001(2021).

    [13] Li C, Xiao Z Y, Ling X Y et al. Broadband visible metamaterial absorber based on a three-dimensional structure[J]. Waves in Random and Complex Media, 29, 403-412(2019).

    [14] Nejat M, Nozhat N. Design, theory, and circuit model of wideband, tunable and polarization-insensitive terahertz absorber based on graphene[J]. IEEE Transactions on Nanotechnology, 18, 684-690(2019).

    [15] Cong J W, Zhou Z Q, Yun B F et al. Broadband visible-light absorber via hybridization of propagating surface plasmon[J]. Optics Letters, 41, 1965-1968(2016).

    [16] Hoa N T Q, Lam P H, Tung P D et al. Numerical study of a wide-angle and polarization-insensitive ultrabroadband metamaterial absorber in visible and near-infrared region[J]. IEEE Photonics Journal, 11, 18371499(2019).

    [17] Wu D, Liu C, Liu Y M et al. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion[J]. RSC Advances, 8, 21054-21064(2018).

    [18] Yi Z, Li J K, Lin J C et al. Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array[J]. Nanoscale, 12, 23077-23083(2020).

    [19] Yu P Q, Yang H, Chen X F et al. Ultra-wideband solar absorber based on refractory titanium metal[J]. Renewable Energy, 158, 227-235(2020).

    [21] Jiang X, Yuan H, Chen D et al. Metasurface based on inverse design for maximizing solar spectral absorption[J]. Advanced Optical Materials, 9, 2100575(2021).

    [22] Smith D R, Dalichaouch R, Kroll N et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).

    [23] Ding F, Dai J, Chen Y T et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [24] Cao Y H, Zhang S W, Sun X D et al. Light-trapping effect of sub-wavelength metal trapezoidal groove array[J]. Laser & Optoelectronics Progress, 56, 202416(2019).

    [25] Li Z B, Yang Y H, Kong X T et al. Fabry-Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit[J]. Journal of Optics A: Pure and Applied Optics, 11, 105002(2009).

    [26] Hu S, Yang S Y, Liu Z et al. Broadband and polarization-insensitive absorption based on a set of multisized Fabry-Perot-like resonators[J]. The Journal of Physical Chemistry C, 123, 13856-13862(2019).

    [27] Smith D R, Schultz S, Markoš P et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 65, 195104(2002).

    [28] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000).

    [29] Ding F, Jin Y, Li B R et al. Ultrabroadband strong light absorption based on thin multilayered metamaterials[J]. Laser & Photonics Reviews, 8, 946-953(2014).

    [30] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin-film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020).

    [31] Li Y, Liu Z, Zhang H et al. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Optics Express, 27, 11809-11818(2019).

    [32] di Vece M, Kuang Y H, van Duren S N et al. Plasmonic nano-antenna a-Si∶H solar cell[J]. Optics Express, 20, 27327-27336(2012).

    Tools

    Get Citation

    Copy Citation Text

    Yang Wang, Xuefei Xuan, Lu Zhu, Jiabing Zhu, Xiaobo Shen, Qiang Gao, Changjun Hu. Design of Ultra-Broadband and High-Absorption Metamaterial Solar Absorber[J]. Chinese Journal of Lasers, 2022, 49(9): 0903001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 9, 2021

    Accepted: Oct. 8, 2021

    Published Online: Apr. 22, 2022

    The Author Email: Zhu Jiabing (zjb3617@163.com), Shen Xiaobo (shenhnnu@163.com)

    DOI:10.3788/CJL202249.0903001

    Topics