Journal of Innovative Optical Health Sciences, Volume. 13, Issue 5, 2030008(2020)
Black phosphorus as a versatile nanoplatform:From unique properties to biomedical applications
[1] [1] H.-D. Wang, D. K. Sang, Z.-N. Guo, R. Cao, J.-L. Zhao, M. N. U. Shah, T.-J. Fan, D.-Y. Fan, H. Zhang, "Black phosphorus-based field effect transistor devices for Ag ions detection," Chin. Phys. B 27, 087308 (2018).
[2] [2] Z. Ye, M. Zhang, Z. Guo, L. Miao, S. T. Han, Z. Wang, X. Zhang, Z. Han, Z. Peng, "Recent advancement in black phosphorus-based photonics, electronics, sensors and energy devices," Mater. Horiz. 4, 997–1019 (2017).
[3] [3] Y. Xu, W. Wang, Y. Ge, H. Guo, Z. Han, "Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application," Adv. Funct. Mater. 27, 1702437 (2017).
[4] [4] L. Kou, C. Chen, S. C. Smith, "Phosphorene: Fabrication, properties, and applications," J. Phys. Chem. Lett. 6, 2794–2805 (2015).
[5] [5] Q. Wei, X. Peng, "Superior mechanical flexibility of phosphorene and few-layer black phosphorus," Appl. Phys. Lett. 104, 251915 (2014).
[6] [6] S. Lan, S. Rodrigues, L. Kang, W. Cai, "Visualizing optical phase anisotropy in black phosphorus," ACS Photon. 3, 1176–1181 (2016).
[7] [7] Y. Xu, X. Jiang, Y. Ge, Z. Guo, D. Fan, "Size-dependent nonlinear optical properties of black phosphorus nanosheets and its applications in ultrafast photonics," J. Mater. Chem. C 5, 3007–3013 (2017).
[8] [8] X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, "Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector," Adv. Funct. Mater. 27, 1606834 (2017).
[9] [9] J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, H. Zhang, "Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers," Sci. Rep. 7, 42357 (2017).
[10] [10] R. Fei, A. Faghaninia, R. Soklaski, J. A. Yan, C. Lo, L. Yang, "Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene," Nano Lett. 14, 6393–6399 (2014).
[11] [11] Y. Xu, Y. Jian, Z. Kai, H. Yuan, S. Qiu, Y. Yao, S. Li, Q. Bao, Z. Han, Y. Zhang, "Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility," Adv. Funct. Mater. 27, 1702211 (2017).
[12] [12] Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, "Metal-ionmodi fied black phosphorus with enhanced stability and transistor performance," Adv. Mater. 29, 1703811 (2017).
[13] [13] X. Chen, G. Xu, X. Ren, Z. Li, Q. Xiang, H. Kai, Z. Han, Z. Huang, J. X. Zhong, "Black/red phosphorus hybrid as an electrode material for highperformance Li-ion battery and supercapacitor," J. Mater. Chem. A 5, 6581–6588 (2017).
[14] [14] A. Chaves, W. Ji, J. Maassen, T. Dumitric?, T. Low, P. Avouris, T. F. Heinz, T. Low, "Theoretical overview of black phosphorus," 381–412 (2017) https://arxiv.org/abs/1710.05808.
[15] [15] Z. C. Luo, M. Liu, Z. N. Guo, X. F. Jiang, A. P. Luo, C. J. Zhao, X. F. Yu, W. C. Xu, H. Zhang, "Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser," Opt. Express 23, 20030–20039 (2015).
[16] [16] Y. Xu, Z. Wang, Z. Guo, H. Huang, Q. Xiao, H. Zhang, X.-F. Yu, "Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots," Adv. Opt. Mater. 4, 1223–1229 (2016).
[17] [17] H. Zhang, J. Liu, J. Liu, J. Wang, L. Su, W. Ma, Z. Guo, "Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the midinfrared region," Opt. Express 24, 30289 (2016).
[18] [18] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu, "Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers," Sci. Rep. 6, 30361 (2016).
[19] [19] X. Tang, W. Liang, J. Zhao, Z. Li, M. Qiu, T. Fan, C. S. Luo, Y. Zhou, Y. Li, Z. Guo, D. Fan, H. Zhang, "Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability," Small 13, 1702739 (2017).
[20] [20] C. Xing, G. Jing, X. Liang, M. Qiu, Z. Li, R. Cao, X. Li, D. Fan, H. Zhang, "Graphene oxide/black phosphorus nanoflake aerogels with robust thermostability and significantly enhanced photothermal properties in air," Nanoscale 9, 8096–8101 (2017).
[21] [21] P. Li, D. Zhang, J. Liu, H. Chang, Y. Sun, N. Yin, "Air-stable black phosphorus devices for ion sensing," ACS Appl. Mater. Interfaces 7, 24396– 24402 (2015).
[22] [22] H. U. Lee, S. C. Lee, J. Won, B. C. Son, S. Choi, Y. Kim, S. Y. Park, H. S. Kim, Y. C. Lee, J. Lee, "Stable semiconductor black phosphorus (BP) @titanium dioxide (TiO2) hybrid photocatalysts," Sci. Rep. 5, 8691 (2015).
[23] [23] M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, "2D black phosphorus–based biomedical applications," Adv. Funct. Mater. 29, 1808306–808325 (2019).
[24] [24] H. U. Lee, S. Y. Park, S. C. Lee, S. Choi, S. Seo, H. Kim, J. Won, K. Choi, K. S. Kang, H. G. Park, H. S. Kim, H. R. An, K. H. Jeong, Y. C. Lee, J. Lee, "Black phosphorus (bp) nanodots for potential biomedical applications," Small 12, 214–219 (2016).
[25] [25] X. Yang, G. Liu, Y. Shi, W. Huang, J. Shao, X. Dong, "Nano-black phosphorus for combined cancer phototherapy: Recent advances and prospects," Nanotechnology 29, 222001 (2018).
[26] [26] Z. Xie, D. Wang, T. Fan, C. Xing, Z. Li, W. Tao, L. Liu, S. Bao, D. Fan, H. Zhang, "Black phosphorus analogue tin sulfide nanosheets: Synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy," J. Mater. Chem. B 6, 4747–4755 (2018).
[27] [27] Y. T. Yew, Z. Sofer, C. C. Mayorga-Martinez, M. Pumera, "Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection," Mater. Chem. Front. 1, 1130–1136 (2017).
[28] [28] Y. Chen, R. Ren, H. Pu, J. Chang, S. Mao, J. Chen, "Field-effect transistor biosensors with twodimensional black phosphorus nanosheets," Biosens. Bioelectron. 89, 505–510 (2017).
[29] [29] V. Kumar, J. R. Brent, M. Shorie, H. Kaur, G. Chadha, A. G. Thomas, E. A. Lewis, A. P. Rooney, L. Nguyen, X. L. Zhong, M. G. Burke, S. J. Haigh, A. Walton, P. D. McNaughter, A. A. Tedstone, N. Savjani, C. A. Muryn, P. O'Brien, A. K. Ganguli, D. J. Lewis, P. Sabherwal, "Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker," ACS Appl. Mater. Interfaces 8, 22860–22868 (2016).
[30] [30] N. Gao, J. Nie, H. Wang, C. Xing, L. Mei, W. Xiong, X. Zeng, Z. Peng, "A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy," J. Biomed. Nanotechnol. 14, 1883–1897 (2018).
[31] [31] W. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng, J. Sheng, Z. Liu, Y. Han, L. Wang, J. Li, L. Deng, Y.-N. Liu, S. Guo, "Black phosphorus nanosheetbased drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer," Adv. Mater. 29, 1603864 (2017).
[32] [32] L. Qin, G. Ling, F. Peng, F. Zhang, S. Jiang, H. He, D. Yang, P. Zhang, "Black phosphorus nanosheets and gemcitabine encapsulated thermosensitive hydrogel for synergistic photothermalchemotherapy," J. Colloid Interface Sci. 556, 232–238 (2019).
[33] [33] W. Ou, J. H. Byeon, R. K. Thapa, S. K. Ku, C. S. Yong, J. O. Kim, "Plug-and-play nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal cancer," ACS Nano 12, 10061–10074 (2018).
[34] [34] S. Geng, L. Wu, H. Cui, W. Tan, T. Chen, P. K. Chu, X. F. Yu, "Synthesis of lipid-black phosphorus quantum dot bilayer vesicles for near-infraredcontrolled drug release," Chem. Commun. 54, 6060–6063 (2018).
[35] [35] X. W. Huang, J. J. Wei, M. Y. Zhang, X. L. Zhang, X. F. Yin, C. H. Lu, J. B. Song, S. M. Bai, H. H. Yang, "Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications," ACS Appl. Mater. Interfaces 10, 35495–35502 (2018).
[36] [36] C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang, Z. Li, S. Zhu, Y. Zheng, K. W. K. Yeung, S. Wu, "Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing," ACS Nano 12, 1747–1759 (2018).
[37] [37] J. Ouyang, R.-Y. Liu, W. Chen, Z. Liu, Q. Xu, K. Zeng, L. Deng, L. Shen, Y.-N. Liu, "A black phosphorus based synergistic antibacterial platform against drug resistant bacteria," J. Mater. Chem. B 6, 6302–6310 (2018).
[38] [38] J. Ouyang, L. Deng, W. Chen, J. Sheng, Z. Liu, L. Wang, Y. N. Liu, "Two dimensional semiconductors for ultrasound-mediated cancer therapy: The case of black phosphorus nanosheets," Chem. Commun. 54, 2874–2877 (2018).
[39] [39] L. Jin, P. Hu, Y. Wang, L. Wu, K. Qin, H. Cheng, S. Wang, B. Pan, H. Xin, W. Zhang, X. Wang, "Fast-acting black-phosphorus-assisted depression therapy with low toxicity," Adv. Mater. 32, e1906050 (2020).
[40] [40] Y. Li, Z. Du, X. Liu, M. Ma, D. Yu, Y. Lu, J. Ren, X. Qu, "Near-infrared activated black phosphorus as a nontoxic photo-oxidant for alzheimer's amyloid- beta peptide," Small 15, e1901116 (2019).
[41] [41] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, "Black phosphorus field-effect transistors," Nat. Nanotechnol. 9, 372– 377 (2014).
[42] [42] S. Das, W. Zhang, M. Demarteau, A. Ho?mann, M. Dubey, A. Roelofs, "Tunable transport gap in phosphorene," Nano Lett. 14, 5733–5739 (2014).
[43] [43] I. Ocsoy, N. Isiklan, S. Cansiz, N. Ozdemir, W. Tan, "ICG-conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy," RSC Adv. 6, 30285–30292 (2016).
[44] [44] H. Dong, M. Jin, Z. Liu, H. Xiong, X. Qiu, W. Zhang, Z. Guo, "In vitro and in vivo braintargeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas," Lasers Med. Sci. 31, 1123–1131 (2016).
[45] [45] X. Zhang, J. Wu, G. R. Williams, S. Niu, Q. Qian, L. M. Zhu, "Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy," Colloids Surf. B, Biointerfaces 173, 101– 108 (2019).
[46] [46] J. Wu, D. H. Bremner, S. Niu, H. Wu, J. Wu, H. Wang, H. Li, L.-M. Zhu, "Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy," Chem. Eng. J. 342, 90–102 (2018).
[47] [47] L. Qin, S. Jiang, H. He, G. Ling, P. Zhang, "Functional black phosphorus nanosheets for cancer therapy," J. Control Release 318, 50–66 (2020).
[48] [48] R. Cai, M. Nie, F. Xu, "Ultrafast turbulenceinduced disintegration ofBNandWS2 quantumdots for potential multifunctional nanotheranostics," Mater. Des. 181, 107925 (2019).
[49] [49] Y. Wang, M. Qiu, M. Won, E. Jung, T. Fan, N. Xie, S.-G. Chi, H. Zhang, J. S. Kim, "Emerging 2D material-based nanocarrier for cancer therapy beyond graphene," Coord. Chem. Rev. 400 213041 (2019).
[50] [50] G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, H. J. Cui, Q. R. Zheng, G. Su, "Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance," Sci. Rep. 4, 6946 (2014).
[51] [51] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez, "Photocurrent generation with two-dimensional van der Waals semiconductors," Chem. Soc. Rev. 44, 3691–3718 (2015).
[52] [52] V. Sorkin, Y. Cai, Z. Ong, G. Zhang, Y. W. Zhang, "Recent advances in the study of phosphorene and its nanostructures," Crit. Rev. Solid State Mater. Sci. 42, 1–82 (2016).
[53] [53] J. W. Jiang, H. S. Park, "Young's modulus of single-layer black phosphorus," J. Phys. D, Appl. Phys. 47, 5762–5770 (2014).
[54] [54] M. Walter, M. I. Bodnarchuk, K. V. Kravchyk, M. V. Kovalenko, "Evaluation of metal phosphide nanocrystals as anode materials for na-ion batteries," Chimia 69, 724–728 (2015).
[55] [55] Z. Zhao, H. Yin, K. Cai, W. Zhou, "Mechanical stability of a nanotube from monolayer black phosphorus with the [110] direction as the tube's circumference or generatrix," Phys. Chem. Chem. Phys. 20, 3465–3473 (2018).
[56] [56] L. Li, R. Sun, J. Yang, "Mechanical behaviors of angle-ply black phosphorus by molecular dynamics simulations," Nanomaterials 8, 758 (2018).
[57] [57] J. W. Jiang, H. S. Park, "Negative poisson's ratio in single-layer black phosphorus," Nat. Commun. 5, 4727 (2014).
[58] [58] X. Peng, Q. Wei, A. Copple, "Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene," Phys. Rev. B 90, 085402 (2014).
[59] [59] J. Qiao, X. Kong, Z. X. Hu, F. Yang, W. Ji, "Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus," Nat. Commun. 5, 4475 (2014).
[60] [60] Z.-Y. Ong, Y. Cai, G. Zhang, Y.-W. Zhang, "Strong thermal transport anisotropy and strain modulation in single-layer phosphorene," J. Phys. Chem. C 118, 25272–25277 (2014).
[61] [61] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P. D. Ye, "Phosphorene: An unexplored 2D semiconductor with a high hole mobility," ACS Nano 8, 4033–4041 (2014).
[62] [62] Q. Liu, X. Zhang, L. B. Abdalla, B. Fazzio, A. Zunger, "Electric field induced topological phase transition in two-dimensional few-layer black phosphorus," Mater. Sci. 15, 1222 (2015).
[63] [63] Y. Jing, Q. Tang, P. He, Z. Zhou, P. Shen, "Small molecules make big differences: Molecular doping effects on electronic and optical properties of phosphorene," Nanotechnology 26, 095201 (2015).
[64] [64] X. Chen, Y. Wu, Z. Wu, Y. Han, S. Xu, L. Wang, W. Ye, T. Han, Y. He, Y. Cai, N. Wang, "Highquality sandwiched black phosphorus heterostructure and its quantum oscillations," Nat. Commun. 6, 7315 (2015).
[65] [65] L. Sun, Z. H. Zhang, H. Wang, M. Li, "Electronic properties of phosphorene nanoribbons with nanoholes," RSC Adv. 8, 7486–7493 (2018).
[66] [66] A. Jain, A. J. McGaughey, "Strongly anisotropic in-plane thermal transport in single-layer black phosphorene," Sci. Rep. 5, 8501 (2015).
[67] [67] Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, "Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2," Phys. Rev. B 89, 035438 (2014).
[68] [68] L. Zhu, G. Zhang, B. Li, "Coexistence of sizedependent and size-independent thermal conductivities in phosphorene," Phys. Rev. B 90, 214302 (2014).
[69] [69] Y. Y. Zhang, Q. X. Pei, J. W. Jiang, N. Wei, Y. W. Zhang, "Thermal conductivities of single- and multi-layer phosphorene: A molecular dynamics study," Nanoscale 8, 483–491 (2016).
[70] [70] P. T. T. Le, M. Yarmohammadi, "Anisotropic magneto-thermoelectric properties of single-layer dilute charged impurity-infected black phosphorus," Phys. E, Low-dimens. Syst. Nanostruct. 107, 11–17 (2019).
[71] [71] V. Tran, R. Soklaski, Y. Liang, L. Yang, "Tunable band gap and anisotropic optical response in fewlayer black phosphorus," Phys. Rev. 89, 235319 (2014).
[72] [72] Y. Ge, C. Si, Y. Xu, Z. He, Z. Liang, Y. Chen, Y. Song, D. Fan, Z. Kai, Z. Han, "Few-layer selenium- doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications," J. Mater. Chem. C 5, 6129–6135 (2017).
[73] [73] Z. Han, L. Jie, Z. Chu, Z. Guo, "2 m passively Q-switched laser based on black phosphorus," Opt. Mater. Express 6, 2374 (2016).
[74] [74] M. Jie, L. Shunbin, G. Zhinan, X. Xiaodong, Z. Han, T. Dingyuan, F. Dianyuan, "Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers," Opt. Express 23, 22643 (2015).
[75] [75] F. Xia, H. Wang, Y. Jia, "Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics," Nat. Commun. 5, 4458 (2014).
[76] [76] L. Kong, Z. Qin, G. Xie, Z. Guo, H. Zhang, P. Yuan, L. Qian, "Black phosphorus as broadband saturable absorber for pulsed lasers from 1 m to 2.7 m wavelength," Laser Phys. Lett. 13, 045801 (2016).
[77] [77] S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, D. Y. Fan, "Broadband nonlinear optical response in multilayer black phosphorus: An emerging infrared and mid-infrared optical material," Opt. Express 23, 11183–11194 (2015).
[78] [78] D. ?ak?r, H. Sahin, F. M. Peeters, "Tuning of the electronic and optical properties of single-layer black phosphorus by strain," Phys. Rev. B 90, 205421 (2014).
[79] [79] Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X.-F. Yu, P. K. Chu, "From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics," Adv. Funct. Mater. 25, 6996–7002 (2015).
[80] [80] T. Fan, Z. Xie, W. Huang, Z. Li, H. Zhang, "Twodimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector," Nanotechnology 30, 114002 (2019).
[81] [81] Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, "Ultrathin 2D nonlayered tellurium nanosheets: Facile liquidphase exfoliation, characterization, and photoresponse with high performance, enhanced stability," Adv. Funct. Mater. 28, 1705833 (2018).
[82] [82] C. Xing, Z. Xie, Z. Liang, W. Liang, T. Fan, J. S. Ponraj, S. C. Dhanabalan, D. Fan, H. Zhang, "2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics," Adv. Opt. Mater. 5, 1700884 (2017).
[83] [83] C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, "Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in highperformance UV–Vis photodetector," ACS Photon. 5, 621–629 (2017).
[84] [84] H. Huang, X. Ren, Z. Li, H. Wang, Z. Huang, H. Qiao, P. Tang, J. Zhao, W. Liang, Y. Ge, J. Liu, J. Li, X. Qi, H. Zhang, "Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance," Nanotechnology 29, 235201 (2018).
[85] [85] W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, H. Zhang, "Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions," Nanoscale 10, 2404–2412 (2018).
[86] [86] Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Li, J. Zhao, J. Zhong, H. Zhang, "High-performance photo-electrochemical photodetector based on liquid- exfoliated few-layered inse nanosheets with enhanced stability," Adv. Funct. Mater. 28, 1705237 (2018).
[87] [87] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, "Liquid exfoliation of layered materials," Science 340, 1226419 (2013).
[88] [88] J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, P. O'Brien, "Production of few-layer phosphorene by liquid exfoliation of black phosphorus," Chem. Commun. 50, 13338–13341 (2014).
[89] [89] J. Y. Xu, L. F. Gao, C. X. Hu, Z. Y. Zhu, M. Zhao, Q. Wang, H. L. Zhang, "Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation," Chem. Commun. 52, 8107–8110 (2016).
[90] [90] S. Seo, H. U. Lee, S. C. Lee, Y. Kim, H. Kim, J. Bang, J. Won, Y. Kim, B. Park, J. Lee, "Triangular black phosphorus atomic layers by liquid exfoliation," Sci. Rep. 6, 23736 (2016).
[91] [91] M. Bat-Erdene, M. Batmunkh, C. J. Shearer, S. A. Tawfik, M. J. Ford, L. Yu, A. J. Sibley, A. D. Slattery, J. S. Quinton, C. T. Gibson, J. G. Shapter, "Efficient and fast synthesis of few-layer black phosphorus via microwave-assisted liquid-phase exfoliation," Small Methods 1, 1700260 (2017).
[92] [92] Q. Zhang, Y. Liu, J. Lai, S. Qi, C. An, Y. Lu, X. Duan, W. Pang, D. Zhang, D. Sun, J.-H. Chen, J. Liu, "Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier," 2D Mater. 5, 025012 (2018).
[93] [93] Y. Chang, A. Nie, S. Yuan, B. Wang, C. Mu, J. Xiang, B. Yang, L. Li, F. Wen, Z. Liu, "Liquidexfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis," Nanotechnology 30, 035701 (2019).
[94] [94] M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, C. M. Niu, "Current progress in black phosphorus materials and their applications in electrochemical energy storage," Nanoscale 9, 13384–13403 (2017).
[95] [95] A. Ambrosi, Z. Sofer, M. Pumera, "Electrochemical exfoliation of layered black phosphorus into phosphorene," Angew. Chem., Int. Ed. Engl. 56, 10443–10445 (2017).
[96] [96] H. Xiao, M. Zhao, J. Zhang, X. Ma, J. Zhang, T. Hu, T. Tang, J. Jia, H. Wu, "Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets," Electrochem. Commun. 89, 10–13 (2018).
[97] [97] J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D. Y. Choi, B. Luther-Davies, Y. Lu, "Producing airstable monolayers of phosphorene and their defect engineering," Nat. Commun. 7, 10450 (2016).
[98] [98] J. Jia, S. K. Jang, S. Lai, J. Xu, Y. J. Choi, J. H. Park, S. Lee, "Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties," ACS Nano 9, 8729– 8736 (2015).
[99] [99] S. Kuriakose, T. Ahmed, S. Balendhran, G. E. Collis, V. Bansal, I. Aharonovich, S. Sriram, M. Bhaskaran, S. Walia, "Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus," Appl. Mater. Today 12, 244–249 (2018).
[100] [100] S. Anju, J. Ashtami, P. V. Mohanan, "Black phosphorus, a prospective graphene substitute for biomedical applications," Mater. Sci. Eng. C Mater. Biol. Appl. 97, 978–993 (2019).
[101] [101] M. Batmunkh, M. Bat-Erdene, J. G. Shapter, "Phosphorene and phosphorene-based materials - prospects for future applications," Adv. Mater. 28, 8586–8617 (2016).
[102] [102] W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, "Plasmaassisted fabrication of monolayer phosphorene and its Raman characterization," Nano Res. 7, 853–859 (2014).
[103] [103] A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant, "Isolation and characterization of few-layer black phosphorus," 2D Mater. 1, 025001 (2014).
[104] [104] Z. Luo, J. Maassen, Y. Deng, Y. Du, R. P. Garrelts, M. S. Lundstrom, P. D. Ye, X. Xu, "Anisotropic in-plane thermal conductivity observed in fewlayer black phosphorus," Nat. Commun. 6, 8572 (2015).
[105] [105] S. Sinha, Y. Takabayashi, H. Shinohara, R. Kitaura, "Simple fabrication of air-stable black phosphorus heterostructures with large-area hBN sheets grown by chemical vapor deposition method," 2D Mater. 3, 035010 (2016).
[106] [106] Y. Yang, M. Wu, X. Zhu, H. Xu, S. Ma, Y. Zhi, H. Xia, X. Liu, J. Pan, J.-Y. Tang, S.-P. Chai, L. Palmisano, F. Parrino, J. Liu, J. Ma, Z.-L. Wang, L. Tan, Y.-F. Zhao, Y.-F. Song, P. Singh, P. Raizada, D. Jiang, D. Li, R. A. Geioushy, J. Ma, J. Zhang, S. Hu, R. Feng, G. Liu, M. Liu, Z. Li, M. Shao, N. Li, J. Peng, W.-J. Ong, N. Kornienko, Z. Xing, X. Fan, J. Ma, "2020 Roadmap on twodimensional nanomaterials for environmental catalysis," Chin. Chem. Lett. 30, 2065–2088 (2019).
[107] [107] C. Li, J. Wang, Y. Wang, H. Gao, G. Wei, Y. Huang, H. Yu, Y. Gan, Y. Wang, L. Mei, H. Chen, H. Hu, Z. Zhang, Y. Jin, "Recent progress in drug delivery," Acta Pharm. Sin B 9, 1145–1162 (2019).
[108] [108] Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, W. Ji, R. S. Ruo?, P. Sutter, "Degradation of black phosphorus (bp): The role of oxygen and water," Chem. Mater. 28, 8330–8339 (2016).
[109] [109] J. O. Island, G. A. Steele, H. S. J. v. d. Zant, A. Castellanos-Gomez, "Environmental instability of few-layer black phosphorus," 2D Mater. 2, 011002 (2015).
[110] [110] Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, W. Ji, R. S. Ruo?, P. Sutter, "Interaction of black phosphorus with oxygen and water," Chem. Mater. 28, 8330–8339 (2016).
[111] [111] S. M. Alshahrani, A. S. Alshetaili, A. Alalaiwe, B. B. Alsulays, M. K. Anwer, R. Al-Shdefat, F. Imam, F. Shakeel, "Anticancer efficacy of selfnanoemulsifying drug delivery system of sunitinib malate," AAPS Pharm. Sci. Tech. 19, 123–133 (2018).
[112] [112] R. A. Doganov, E. C. O'Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. Castro Neto, B. Ozyilmaz, "Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere," Nat. Commun. 6, 6647 (2015).
[113] [113] Y. Y. Illarionov, M. Waltl, G. Rzepa, J. S. Kim, S. Kim, A. Dodabalapur, D. Akinwande, T. Grasser, "Long-term stability and reliability of black phosphorus field-effect transistors," ACS Nano 10, 9543– 9549 (2016).
[114] [114] C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, M. C. Hersam, "Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry," Nat. Chem. 8, 597–602 (2016).
[115] [115] Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X. F. Yu, P. Li, P. K. Chu, "Surface coordination of black phosphorus for robust air and water stability," Angew. Chem., Int. Ed. Engl. 55, 5003–5007 (2016).
[116] [116] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, "Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy," Proc. Natl. Acad. Sci. USA 115, 501–506 (2018).
[117] [117] X. Wang, C. Tang, W. Zhu, X. Zhou, Q. Zhou, C. Cheng, "A new effective approach to prevent the degradation of black phosphorus: The scandium transition metal doping," J. Phys. Chem. C 122, 9654–9662 (2018).
[118] [118] W. Lv, B. Yang, B. Wang, W. Wan, Y. Ge, R. Yang, C. Hao, J. Xiang, B. Zhang, Z. Zeng, Z. Liu, "Sulfur-doped black phosphorus field-effect transistors with enhanced stability," ACS Appl. Mater. Interfaces 10, 9663–9668 (2018).
[119] [119] J. Zhang, S. Chen, Y. Ma, D. Wang, J. Zhang, Y. Wang, W. Li, Z. Yu, H. Zhang, F. Yin, Z. Li, "Organosilicon modification to enhance the stability of black phosphorus nanosheets under ambient conditions," J. Mater. Chem. B 6, 4065–4070 (2018).
[120] [120] X. Zeng, M. Luo, G. Liu, X. Wang, W. Tao, Y. Lin, X. Ji, L. Nie, L. Mei, "Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments," Adv. Sci. 5, 1800510 (2018).
[121] [121] Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang, P. K. Chu, "Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents," Angew. Chem., Int. Ed. Engl. 54, 11526–11530 (2015).
[122] [122] X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo, H. Li, J. Lin, L. Sun, W. Chen, Z. Xu, L. Xie, W. Huang, H. Zhang, "Black phosphorus quantum dots," Angew. Chem., Int. Ed. Engl. 54, 3653–3657 (2015).
[123] [123] Y. Sun, S. Fan, S. Fan, C. Li, Z. Shang, M. Gu, S. Liang, X. Tian, "In vitro and In vivo toxicity of black phosphorus nanosheets," J. Nanosci. Nanotechnol. 20, 659–667 (2020).
[124] [124] X. Zhang, Z. Zhang, S. Zhang, D. Li, W. Ma, C. Ma, F. Wu, Q. Zhao, Q. Yan, B. Xing, "Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms," Small 13, 1701210 (2017).
[125] [125] S. J. Song, Y. C. Shin, H. U. Lee, B. Kim, D. W. Han, D. Lim, "Dose- and time-dependent cytotoxicity of layered black phosphorus in fibroblastic cells," Nanomaterials (Basel) 8, 408 (2018).
[126] [126] X. Mu, J. Y. Wang, X. Bai, F. Xu, H. Liu, J. Yang, Y. Jing, L. Liu, X. Xue, H. Dai, Q. Liu, Y. M. Sun, C. Liu, X. D. Zhang, "Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice," ACS Appl. Mater. Interfaces 9, 20399–20409 (2017).
[127] [127] Y. C. Shin, S. J. Song, Y. B. Lee, M. S. Kang, H. U. Lee, J. W. Oh, D. W. Han, "Application of black phosphorus nanodots to live cell imaging," Biomater. Res. 22, 31 (2018).
[128] [128] N. M. Lati?, W. Z. Teo, Z. Sofer, A. C. Fisher, M. Pumera, "The cytotoxicity of layered black phosphorus," Chemistry 21, 13991–13995 (2015).
[129] [129] D. L. Childers, J. Corman, M. Edwards, J. J. Elser, "Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle," BioScience 61, 117–124 (2011).
[130] [130] L. Chan, P. Gao, W. Zhou, C. Mei, Y. Huang, X. F. Yu, P. K. Chu, T. Chen, "Sequentially triggered delivery system of black phosphorus quantum dots with surface charge-switching ability for precise tumor radiosensitization," ACS Nano 12, 12401– 12415 (2018).
[131] [131] H. Huang, L. He, W. Zhou, G. Qu, J. Wang, N. Yang, J. Gao, T. Chen, P. K. Chu, X. F. Yu, "Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy," Biomaterials 171, 12–22 (2018).
[132] [132] J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. F. Yu, Y. Zhao, H. Zhang, H. Wang, P. K. Chu, "Biodegradable black phosphorusbased nanospheres for in vivo photothermal cancer therapy," Nat. Commun. 7, 12967 (2016).
[133] [133] H. Xie, J. Shao, Y. Ma, J. Wang, H. Huang, N. Yang, H. Wang, C. Ruan, Y. Luo, Q. Q. Wang, P. K. Chu, X. F. Yu, "Biodegradable near-infraredphotoresponsive shape memory implants based on black phosphorus nanofillers," Biomaterials 164, 11–21 (2018).
[134] [134] G. Qu, W. Liu, Y. Zhao, J. Gao, T. Xia, J. Shi, L. Hu, W. Zhou, J. Gao, H. Wang, Q. Luo, Q. Zhou, S. Liu, X. F. Yu, G. Jiang, "Improved biocompatibility of black phosphorus nanosheets by chemical modification," Angew. Chem., Int. Ed. Engl. 56, 14488–14493 (2017).
[135] [135] S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y. W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, "Extraordinary photoluminescence and strong temperature angle-dependent raman responses in few-layer phosphorene," ACS Nano 8, 9590–9596 (2014).
[136] [136] S. Kunjachan, J. Ehling, G. Storm, F. Kiessling, T. Lammers, "Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, prospects," Chem. Rev. 115, 10907–10937 (2015).
[137] [137] G. P. Luke, D. Yeager, S. Y. Emelianov, "Biomedical applications of photoacoustic imaging with exogenous contrast agents," Ann. Biomed. Eng. 40, 422–437 (2012).
[138] [138] C. Sun, L. Wen, J. Zeng, Y. Wang, Q. Sun, L. Deng, C. Zhao, Z. Li, "One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer," Biomaterials 91, 81–89 (2016).
[139] [139] Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, X. F. Yu, "TiL4-Coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer," Small 13, 1602896 (2017).
[140] [140] B. Yang, J. Yin, Y. Chen, S. Pan, H. Yao, Y. Gao, J. Shi, "2D-Black-Phosphorus-reinforced 3d-printed sca?olds: A stepwise countermeasure for osteosarcoma," Adv. Mater. 30, 1705611 (2018).
[141] [141] T. Guo, Y. Lin, G. Jin, R. Weng, J. Song, X. Liu, G. Huang, L. Hou, H. Yang, "Manganese-phenolic network-coated black phosphorus nanosheets for theranostics combining magnetic resonance/photoacoustic dual-modal imaging and photothermal therapy," Chem. Commun. 55, 850–853 (2019).
[142] [142] T. Fan, Y. Zhou, M. Qiu, H. Zhang, "Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine," J. Innov. Opt. Health Sci. 11, 1830003 (2018).
[143] [143] S. Wang, J. Shao, Z. Li, Q. Ren, X.-F. Yu, S. Liu, "Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis," Nano Lett. 19, 5587– 5594 (2019).
[144] [144] D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C. Li, F. He, J. Lin, "Assembly of au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer Therapy," Adv. Funct. Mater. 27, 1700371 (2017).
[145] [145] Y. Li, Z. Liu, Y. Hou, G. Yang, X. Fei, H. Zhao, Y. Guo, C. Su, Z. Wang, H. Zhong, Z. Zhuang, Z. Guo, "Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy," ACS Appl. Mater. Interfaces 9, 25098–25106 (2017).
[146] [146] X. Yang, D. Wang, Y. Shi, J. Zou, Q. Zhao, Q. Zhang, W. Huang, J. Shao, X. Xie, X. Dong, "Black phosphorus nanosheets immobilizing CE6 for imaging-guided photothermal/photodynamic cancer therapy," ACS Appl. Mater. Interfaces 10, 12431–12440 (2018).
[147] [147] L. Deng, Y. Xu, C. Sun, B. Yun, Q. Sun, C. Zhao, Z. Li, "Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer," Sci. Bull. 63, 917–924 (2018).
[148] [148] J. Zhou, Z. Li, M. Ying, M. Liu, X. Wang, X. Wang, L. Cao, H. Zhang, G. Xu, "Black phosphorus nanosheets for rapid microRNA detection," Nanoscale 10, 5060–5064 (2018).
[149] [149] X. Yang, D. Wang, J. Zhu, L. Xue, C. Ou, W. Wang, M. Lu, X. Song, X. Dong, "Functional black phosphorus nanosheets for mitochondriatargeting photothermal/photodynamic synergistic cancer therapy," Chem. Sci. 10, 3779–3785 (2019).
[150] [150] N. Gao, C. Xing, H. Wang, L. Feng, X. Zeng, L. Mei, Z. Peng, "pH-Responsive dual drug-loaded nanocarriers based on poly (2-ethyl-2-oxazoline) modified black phosphorus nanosheets for cancer chemo/photothermal therapy," Front. Pharmacol. 10, 270 (2019).
[151] [151] R. S. Wu, J. Lin, Y. M. Xing, Z. L. Dai, L. W. Wang, X. P. Zhang, "pH-Sensitive black phosphorous- incorporated hydrogel as novel implant for cancer treatment," J. Pharm. Sci. 108, 2542–2551 (2019).
[152] [152] X. Ye, X. Liang, Q. Chen, Q. Miao, X. Chen, X. Zhang, L. Mei, "Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy," ACS Nano 13, 2956–2968 (2019).
[153] [153] X. Liang, X. Ye, C. Wang, C. Xing, Q. Miao, Z. Xie, X. Chen, X. Zhang, H. Zhang, L. Mei, "Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation," J. Control. Release 296, 150–161 (2019).
[154] [154] J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang, P. K. Chu, X. F. Yu, "Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer," Adv. Sci. 5, 1700848 (2018).
[155] [155] J. Liu, P. Du, T. Liu, B. J. Cordova Wong, W. Wang, H. Ju, J. Lei, "A black phosphorus/ manganese dioxide nanoplatform: Oxygen selfsupply monitoring, photodynamic therapy enhancement and feedback," Biomaterials 192, 179– 188 (2019).
[156] [156] T. Guo, Y. Wu, Y. Lin, X. Xu, H. Lian, G. Huang, J. Z. Liu, X. Wu, H. H. Yang, "Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy," Small 14, 1702815 (2018).
[157] [157] J. Liu, P. Du, H. Mao, L. Zhang, H. Ju, J. Lei, "Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy," Biomaterials 172, 83–91 (2018).
[158] [158] M. Zhang, W. Wang, Y. Cui, N. Zhou, J. Shen, "Near-infrared light-mediated photodynamic/photothermal therapy nanoplatform by the assembly of Fe3O4 carbon dots with graphitic black phosphorus quantum dots," Int. J. Nanomed. 13, 2803– 2819 (2018).
[159] [159] S. Wang, J. Weng, X. Fu, J. Lin, W. Fan, N. Lu, J. Qu, S. Chen, T. Wang, P. Huang, "Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy," Nanotheranostics 1, 208–216 (2017).
[160] [160] V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufres, G. Gervais, R. Martel, T. Szkopek, "Twodimensional magnetotransport in a black phosphorus naked quantum well," Nat. Commun. 6, 7702 (2015).
[161] [161] W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, L. Mei, "Black phosphorus nanosheets as a robust delivery platform for cancer theranostics," Adv. Mater. 29, 1603276 (2017).
[162] [162] A. G. Thompson, E. Gray, S. M. Heman-Ackah, I. Mager, K. Talbot, S. E. Andaloussi, M. J. Wood, M. R. Turner, "Extracellular vesicles in neurodegenerative disease - pathogenesis to biomarkers," Nat. Rev. Neurol. 12, 346–357 (2016).
[163] [163] T. Wyss-Coray, "Ageing, neurodegeneration and brain rejuvenation," Nature 539, 180–186 (2016).
[164] [164] A. Robert, Y. Liu, M. Nguyen, B. Meunier, "Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimer's disease," Acc. Chem. Res. 48, 1332– 1339 (2015).
[165] [165] J. T. Pedersen, S. W. Chen, C. B. Borg, S. Ness, J. M. Bahl, N. H. Heegaard, C. M. Dobson, L. Hemmingsen, N. Cremades, K. Teilum, "Amyloid-beta and alpha-synuclein decrease the level of metalcatalyzed reactive oxygen species by radical scavenging and redox silencing," J. Am. Chem. Soc. 138, 3966–3969 (2016).
[166] [166] Y. Zhang, Z. Wang, X. Li, L. Wang, M. Yin, L. Wang, N. Chen, C. Fan, H. Song, "Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration in drosophila," Adv. Mater. 28, 1387–1393 (2016).
[167] [167] M. Rosini, E. Simoni, A. Milelli, A. Minarini, C. Melchiorre, "Oxidative stress in Alzheimer's disease: Are we connecting the dots?" J. Med. Chem. 57, 2821–2831 (2014).
[168] [168] G. Bjorklund, V. Stejskal, M. A. Urbina, M. Dadar, S. Chirumbolo, J. Mutter, "Metals and Parkinson's disease: Mechanisms and biochemical processes," Curr. Med. Chem. 25, 2198–2214 (2018).
[169] [169] E. Atrian-Blasco, A. Conte-Daban, C. Hureau, "Mutual interference of Cu and Zn ions in Alzheimer's disease: Perspectives at the molecular level," Dalton Trans. 46, 12750–12759 (2017).
[170] [170] W. Chen, J. Ouyang, X. Yi, Y. Xu, C. Niu, W. Zhang, L. Wang, J. Sheng, L. Deng, Y. N. Liu, S. Guo, "Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy," Adv. Mater. 30, 1703458 (2018).
[171] [171] A. Khademhosseini, R. Langer, "A decade of progress in tissue engineering," Nat. Protoc. 11, 1775–1781 (2016).
[172] [172] A. V. Mironov, A. M. Grigoryev, L. I. Krotova, N. N. Skaletsky, V. K. Popov, V. I. Sevastianov, "3D printing of PLGA scaffolds for tissue engineering," J. Biomed. Mater. Res. A 105, 104– 109 (2017).
[173] [173] S. H. Yoon, J. M. Goo, C. H. Lee, J. Y. Cho, D. W. Kim, H. J. Kim, J. C. Paeng, Y. T. Kim, "Virtual reality-assisted localization and three-dimensional printing-enhanced multidisciplinary decision to treat radiologically occult superficial endobronchial lung cancer," Thorac. Cancer 9, 1525–1527 (2018).
[174] [174] K. Ueda, A. Onishi, S. I. Ito, M. Nakamura, M. Takahashi, "Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells," Biochem. Biophys. Res. Commun. 495, 2595–2601 (2018).
[175] [175] Y. Zhang, D. Zhai, M. Xu, Q. Yao, H. Zhu, J. Chang, C. Wu, "3D-printed bioceramic scaffolds with antibacterial and osteogenic activity," Biofabrication 9, 025037 (2017).
[176] [176] C. C. Mayorga-Martinez, N. Mohamad Lati?, A. Y. S. Eng, Z. Sofer, M. Pumera, "Black phosphorus nanoparticle labels for immunoassays via hydrogen evolution reaction mediation," Anal. Chem. 88, 10074–10079 (2016).
[177] [177] W. Gu, Y. Yan, X. Pei, C. Zhang, C. Ding, Y. Xian, "Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity," Sens. Actuators B, Chem. 250, 601–607 (2017).
[178] [178] J. Peng, Y. Lai, Y. Chen, J. Xu, L. Sun, J. Weng, "Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir," Small 13, 1603589 (2017).
[179] [179] T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, Z. Dai, Y. Duo, L. Wu, K. Qi, B. N. Shivananju, L. Zhang, X. Cui, H. Zhang, Q. Bao, "Ultrasensitive detection of miRNA with an antimonene- based surface plasmon resonance sensor," Nat. Commun. 10, 28 (2019).
Get Citation
Copy Citation Text
Sha Xiong, Xiaojia Chen, Yao Liu, Taojian Fan, Qi Wang, Han Zhang, Tongkai Chen. Black phosphorus as a versatile nanoplatform:From unique properties to biomedical applications[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2030008
Received: Feb. 7, 2020
Accepted: Mar. 1, 2020
Published Online: Oct. 29, 2020
The Author Email: Han Zhang (hzhang@szu.edu.cn)