Journal of Inorganic Materials, Volume. 39, Issue 12, 1397(2024)
[1] HUANG Z, BAI Y, HUANG X et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells[J]. Nature, 623, 531(2023).
[3] PARK J, KIM J, YUN H S et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides[J]. Nature, 616, 724(2023).
[4] LIANG Z, ZHANG Y, XU H et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 624, 557(2023).
[5] WANG R, MUJAHID M, DUAN Y et al. A review of perovskites solar cell stability[J]. Adv. Funct. Mater., 29, 1808843(2019).
[6] HUI W, KANG X, WANG B et al. Stable electron-transport-layer- free perovskite solar cells with over 22% power conversion efficiency[J]. Nano Lett., 23, 2195(2023).
[7] LIU Q, LIU Y, LIU H et al. Magnetron sputtering Zn2SnO4 electron-transport layer for all room-temperature-processed perovskite solar cells[J]. Sol. RRL, 8, 2300926(2024).
[8] KIMATA H, YAMAGUCHI S, GOTANDA T et al. Open-circuit- voltage improvement mechanism of perovskite solar cells revealed by operando spin observation[J]. ACS Appl. Mater. Interfaces, 15, 58539(2023).
[9] GOU Y, WANG H, LI Y et al. Developing a gradient titanium dioxide/amorphous tantalum nitride electron transporting layer for efficient and stable perovskite solar cells[J]. Inorg. Chem. Front., 10, 6622(2023).
[10] LIU J, YIN Y, HE B et al. Focusing on the bottom contact: carbon quantum dots embedded SnO2 electron transport layer for high- performance and stable perovskite solar cells[J]. Mat. Today Phys., 101041(2023).
[11] HU W, ZHOU W, LEI X et al. Low-temperature
[12] JIANG Z, HE Z, MA S et al. Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple- cation perovskite solar cells[J]. J. Phys. Chem. C, 127, 19432(2023).
[13] HE J, DING T, WU W. Surface lattice perturbation of electron transport layer reducing oxygen vacancies for positive photovoltaic effect[J]. Sol. RRL, 6, 2200226(2022).
[14] LI S, YANG Y, SU K et al. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells[J]. Chin. J. Chem. Eng., 29(2022).
[15] YOU S, ZENG H, KU Z et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells[J]. Adv. Mater., 32, 2003990(2020).
[16] LIN L, JONES T W, YANG T C J et al. Inorganic electron transport materials in perovskite solar cells[J]. Adv. Funct. Mater., 31, 2008300(2021).
[17] BU T, LI J, ZHENG F et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nat. Commun., 9, 4609(2018).
[18] LEE H B, JEON M K, KUMAR N et al. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent[J]. Adv. Funct. Mater., 29, 1903213(2019).
[19] MÉNDEZ P F, MUHAMMED S K M, BAREA E M et al. Analysis of the UV-Ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis[J]. Sol. RRL, 3, 1900191(2019).
[20] ZHOU J, ZHOU R, ZHU J et al. Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells[J]. Sol. RRL, 5, 2100494(2021).
[21] LIU H, CHEN Z, WANG H et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells[J]. J. Mater. Chem. A, 7, 10636(2019).
[22] SONG K K, ZOU X P, ZHANG H Y et al. Effect of SnO2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells[J]. Coatings, 11, 591(2021).
[23] CORREA BAENA J P, STEIER L, TRESS W et al. Highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy Environ. Sci., 8, 2928(2015).
[24] ANARAKI E H, KERMANPUR A, MAYER M T et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells[J]. ACS Energy Lett., 3, 773(2018).
[25] DING B, HUANG S Y, CHU Q Q et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules[J]. J. Mater. Chem. A, 6, 10233(2018).
[26] BU T, LIU X, ZHOU Y et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells[J]. Energy Environ. Sci., 10, 2509(2017).
[27] WU C, FANG W, CHENG Q et al. MXene-regulated perovskite vertical growth for high-performance solar cells[J]. Angew. Chem. Int. Ed., 61, e202210970(2022).
[28] ZOU Y, EICHHORN J, RIEGER S et al. Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells[J]. Nano Energy, 108449(2023).
[29] DOU J, ZHU C, WANG H et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability[J]. Adv. Mater., 33, 2102947(2021).
Get Citation
Copy Citation Text
Suolan LIU, Fuyuan LUAN, Zihua WU, Chunhui SHOU, Huaqing XIE, Songwang YANG.
Category:
Received: Apr. 18, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Songwang YANG (swyang@mail.sic.ac.cn)