Acta Optica Sinica, Volume. 44, Issue 15, 1513017(2024)
Latest Research Progress in Silicon-Based Modulators (Invited)
Fig. 1. Silicon-based MZM structure. (a) MOS capacitor structure[20]; (b) depletion type vertical PN junction structure[21]; (c) positive biased PIN junction structure[22]; (d) depletion type transverse PN junction structure[23]; (e) design of modulator electrode[23]; (f) interleaved PN junction structure[25]
Fig. 3. Large-bandwidth silicon MZM. (a) Silicon-based modulator with periodic segmented electrodes[31]; (b) bandwidth results after using segmented electrodes[31]; (c) silicon substrate etching and removing process[32]; (d) large-bandwidth silicon optoelectronic hybrid packaging system[33]; (e) large-bandwidth silicon segmented modulator[34]; (f) experimental results of ultrahigh-speed signal transmission[34]
Fig. 6. Silicon-based photonic crystal modulators. (a) Ultra-small silicon-based photonic crystal modulators with double/single phase shift arms[44]; (b) silicon-based photonic crystal IQ modulator[46]; (c) silicon-based photonic crystal segmented modulator[46]; (d) all C-band silicon photonic crystal modulator[47]; (e) large-bandwidth silicon photonic crystal modulator with improved electrode design[48]
Fig. 7. Silicon-based waveguide grating modulators. (a) One-dimensional grating structure in silicon-based modulator[50]; (b) dual port silicon waveguide grating modulator[52]; (c) dual phase-shifting structure silicon waveguide grating modulator[53]; (d) ultra-high modulation efficiency silicon waveguide grating modulator[54]; (e) silicon-based waveguide grating segmented modulator[55]
Fig. 8. Ultra-large-bandwidth slow-light silicon modulator. (a) Ultra-compact and large-bandwidth slow-light silicon modulator[56-57]; (b) performance of ultra-compact and large-bandwidth slow-light silicon modulator[56-57]; (c) single wavelength PAM-4 eye diagrams using 110 GHz slow-light silicon modulator[58]
Fig. 9. Silicon-based germanium modulators. (a) GeSi electro-absorption modulator based on FK effect[59]; (b) GeSi modulator based on Ge/Si heterojunction structure[60]; (c) structural dimensions of GeSi electro-absorption modulator[61]; (d) photograph of large-bandwidth GeSi modulator[62]; (e) ultra-high-speed GeSi electro-absorption modulator[63]
Fig. 10. Silicon-based organic polymer modulators. (a) Large-bandwidth silicon-organic hybrid modulator[64]; (b) submillimeter silicon-organic hybrid modulator[65]; (c) high-temperature-resistant silicon-organic hybrid modulator[66]; (d) high-temperature-resistant and low-drive-voltage silicon-organic hybrid modulator[67]; (e) large-bandwidth and high-temperature-resistant plasmonic silicon-organic hybrid MRM[68]
Fig. 11. Silicon-based thin-film lithium niobate modulators. (a) Silicon-based thin-film lithium niobate modulator operating at CMOS-compatible voltage[69]; (b) large-bandwidth silicon-based thin-film lithium niobate modulator[71]; (c) segmented electrode silicon-based thin-film lithium niobate modulator[72]; (d) silicon dual-polarization thin-film lithium niobate IQ modulator[73]; (e) silicon hybrid integrated thin-film lithium niobate modulator[77]; (f) silicon hybrid integrated thin-film lithium niobate IQ modulator[80]
Fig. 12. Silicon-based two-dimension material modulators. (a) Graphene microdisk thermooptical modulator[83]; (b) black phosphorus MZI thermooptical modulator[86]; (c) high-speed graphene electro-absorption modulator[91]; (d) graphene electro-refractive modulator[95]; (e) hybrid graphene–WS2 MZM on passive silicon waveguide[98]; (f) efficient MoS2 all-optical modulator[99]
|
|
Get Citation
Copy Citation Text
Changhao Han, Haoyu Wang, Haowen Shu, Jun Qin, Xingjun Wang. Latest Research Progress in Silicon-Based Modulators (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513017
Category: Integrated Optics
Received: May. 13, 2024
Accepted: Jun. 20, 2024
Published Online: Aug. 5, 2024
The Author Email: Wang Xingjun (xjwang@pku.edu.cn)
CSTR:32393.14.AOS241008