Acta Optica Sinica, Volume. 44, Issue 15, 1513017(2024)

Latest Research Progress in Silicon-Based Modulators (Invited)

Changhao Han1,2, Haoyu Wang3, Haowen Shu1,5,7, Jun Qin6, and Xingjun Wang1,4,5,7、*
Author Affiliations
  • 1SKL of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 2Department of Electrical and Computer Engineering, University of California, Santa Barbara (UCSB), Santa Barbara93106, California , USA
  • 3School of Integrated Circuits, Peking University, Beijing 100871, China
  • 4Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu , China
  • 5Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
  • 6Information and Communication System Laboratory, Beijing Information Science and Technology University, Beijing 100101, China
  • 7Peng Cheng Laboratory, Shenzhen 518055, Guangdong , China
  • show less
    Figures & Tables(14)
    Silicon-based MZM structure. (a) MOS capacitor structure[20]; (b) depletion type vertical PN junction structure[21]; (c) positive biased PIN junction structure[22]; (d) depletion type transverse PN junction structure[23]; (e) design of modulator electrode[23]; (f) interleaved PN junction structure[25]
    Silicon-based MZM for high-order signal transmission. (a) Single-drive silicon MZM[27]; (b) silicon-based IQ modulator for QPSK signal transmission[28]; (c) silicon-based modulator and system for PDM-QPSK signal transmission[29]; (d) PDM-QPSK and PDM-16-QAM signal transmission results[30]
    Large-bandwidth silicon MZM. (a) Silicon-based modulator with periodic segmented electrodes[31]; (b) bandwidth results after using segmented electrodes[31]; (c) silicon substrate etching and removing process[32]; (d) large-bandwidth silicon optoelectronic hybrid packaging system[33]; (e) large-bandwidth silicon segmented modulator[34]; (f) experimental results of ultrahigh-speed signal transmission[34]
    Silicon-based MRM structure. (a) Carrier-injection silicon MRM[35]; (b) carrier-depletion silicon MRM[36]; (c) low-energy-consumption silicon MRM[37]
    Large-bandwidth silicon MRM. (a) Tunable large-bandwidth silicon MRM and its experimental results[38]; (b) optoelectronic integrated system based on large-bandwidth silicon MRM[39]; (c) ultra-large-bandwidth silicon MRM[40]
    Silicon-based photonic crystal modulators. (a) Ultra-small silicon-based photonic crystal modulators with double/single phase shift arms[44]; (b) silicon-based photonic crystal IQ modulator[46]; (c) silicon-based photonic crystal segmented modulator[46]; (d) all C-band silicon photonic crystal modulator[47]; (e) large-bandwidth silicon photonic crystal modulator with improved electrode design[48]
    Silicon-based waveguide grating modulators. (a) One-dimensional grating structure in silicon-based modulator[50]; (b) dual port silicon waveguide grating modulator[52]; (c) dual phase-shifting structure silicon waveguide grating modulator[53]; (d) ultra-high modulation efficiency silicon waveguide grating modulator[54]; (e) silicon-based waveguide grating segmented modulator[55]
    Ultra-large-bandwidth slow-light silicon modulator. (a) Ultra-compact and large-bandwidth slow-light silicon modulator[56-57]; (b) performance of ultra-compact and large-bandwidth slow-light silicon modulator[56-57]; (c) single wavelength PAM-4 eye diagrams using 110 GHz slow-light silicon modulator[58]
    Silicon-based germanium modulators. (a) GeSi electro-absorption modulator based on FK effect[59]; (b) GeSi modulator based on Ge/Si heterojunction structure[60]; (c) structural dimensions of GeSi electro-absorption modulator[61]; (d) photograph of large-bandwidth GeSi modulator[62]; (e) ultra-high-speed GeSi electro-absorption modulator[63]
    Silicon-based organic polymer modulators. (a) Large-bandwidth silicon-organic hybrid modulator[64]; (b) submillimeter silicon-organic hybrid modulator[65]; (c) high-temperature-resistant silicon-organic hybrid modulator[66]; (d) high-temperature-resistant and low-drive-voltage silicon-organic hybrid modulator[67]; (e) large-bandwidth and high-temperature-resistant plasmonic silicon-organic hybrid MRM[68]
    Silicon-based thin-film lithium niobate modulators. (a) Silicon-based thin-film lithium niobate modulator operating at CMOS-compatible voltage[69]; (b) large-bandwidth silicon-based thin-film lithium niobate modulator[71]; (c) segmented electrode silicon-based thin-film lithium niobate modulator[72]; (d) silicon dual-polarization thin-film lithium niobate IQ modulator[73]; (e) silicon hybrid integrated thin-film lithium niobate modulator[77]; (f) silicon hybrid integrated thin-film lithium niobate IQ modulator[80]
    Silicon-based two-dimension material modulators. (a) Graphene microdisk thermooptical modulator[83]; (b) black phosphorus MZI thermooptical modulator[86]; (c) high-speed graphene electro-absorption modulator[91]; (d) graphene electro-refractive modulator[95]; (e) hybrid graphene–WS2 MZM on passive silicon waveguide[98]; (f) efficient MoS2 all-optical modulator[99]
    • Table 1. Summary of representative results on silicon modulators with different optical structures

      View table

      Table 1. Summary of representative results on silicon modulators with different optical structures

      Ref.YearStructureLength or radiusEO bandwidthModulation efficiencyLossSignal transmission speed
      [21]2007PN MZM1 mm20 GHz~4 V·cm30 Gbit/s OOK
      [22]2007PIN MZM0.1-0.2 mm3.6 V·cm12 dB10 Gbit/s OOK
      [24]2012PN MZM1 mm40 GHz@6 dB2.8 V·cm7.4 dB50 Gbit/s OOK
      [25]2013Interleaved PN MZM0.95 mm20 GHz2.4 V·cm4 dB40 Gbit/s OOK
      [27]2012Push pull PN MZM2 mm2.4 V·cm9 dB50 Gbit/s OOK
      [29]2013IQ PN MZM19 GHz per device4.5 dB per device224 Gbit/s 16 QAM
      [31]2015PN MZM4 mm41 GHz3.2 V·cm3.8 dB60 Gbit/s OOK
      [32]2018PN MZM2 mm60 GHz1.4 V·cm5.4 dB

      90 Gbit/s OOK

      112 Gbit/s PAM-4

      [34]2023PN MZM2 mm per decive67 GHz per device3 V·cm per device8.5 dB360 Gbit/s 8-ASK
      [35]2005PIN MRM6 μm5 Gbit/s OOK
      [37]2010PN MRM7.5 μm16.3 GHz25 Gbit/s OOK
      [38]2020PN MRM10 μm50 GHz0.52 V·cm~3 dB128 Gbit/s PAM-4
      [40]2022PN MRM~5 μm67 GHz200 Gbit/s PAM-4
      [44]2012Slow light modulator90 μm6.2 dB40 Gbit/s OOK
      [46]2016Slow light modulator300 μm12 GHz~0.3 V·cm14 dB56 Gbit/s QPSK
      [47]2017Slow light modulator200 μm5 dB25 Gbit/s OOK
      [48]2019Slow light modulator200 μm38 GHz0.44 V·cm5 dB

      64 Gbit/s OOK

      100 Gbit/s PAM-4

      [50]2011Slow light modulator500 μm16 GHz0.85 V·cm6 dB40 Gbit/s OOK
      [52]2015Slow light modulator155 μm26 GHz32 Gbit/s OOK
      [55]2021Slow light modulator570 μm40 GHz0.51 V·cm5.5 dB90 Gbit/s PAM-4
      [56]2023Slow light modulator124 μm110 GHz6.8 dB110 Gbit/s OOK
    • Table 2. Summary of representative results on silicon-based heterogeneous material modulators

      View table

      Table 2. Summary of representative results on silicon-based heterogeneous material modulators

      Ref.YearStructureSize or radiusEO bandwidthModulation efficiencyLossSignal transmission speed
      [59]2008GeSi modulator30.0 μm21.2 GHz3.7 dB
      [60]2018GeSi modulator56 GHz56 Gbit/s OOK
      [62]2022GeSi modulator20.0 μm×40.0 μm65 GHz4 dB@1550 nm224 Gbit/s PAM-4
      [63]2023GeSi modulator20.0 μm110 GHz2.2 dB/V6.5 dB

      148 Gbit/s OOK

      280 Gbit/s PAM-4

      [64]2014Silicon-organic hybrid modulator0.5 mm100 GHz1.1 V·cm2 dB

      120 Gbit/s PAM-4

      400 Gbit/s 16-QAM

      [66]2020Silicon-organic hybrid modulator8.0 mm68 GHz1.44 V·cm

      100 Gbit/s OOK

      200 Gbit/s PAM-4

      [68]2023Silicon-organic hybrid modulator176 GHz1.2 dB408 Gbit/s PAM-4
      [69]2018LNOI modulator5.0 mm100 GHz2.2 V·cm0.5 dB140 GHz 4-ASK
      [70]2022LNOI modulator5.0 mm110 GHz2.37 V·cm18 dB250 Gbit/s six-level pulse amplitude modulation
      [71]2022LNOI modulator5.8 mm170 GHz2.3 V·cm
      [73]2022LNOI modulator23.5 mm110 GHz2.35 V·cm6.5 dB1.96 Tbit/s 400-QAM
      [74]2022LNOI modulator3.4 mm67 GHz0.35 V·cm0.15 dB240 Gbit/s PAM-4
      [76]2014Hybrid integration LNOI modulator15.0 μm radius5 GHz3.3 pm/V4.3 dB9 Gbit/s OOK
      [77]2018Hybrid integration LNOI modulator5.0 mm106 GHz6.7 V·cm7.6 dB
      [78]2022Hybrid integration LNOI modulator1.4 cm110 GHz3.1 V·cm1.8 dB
      [80]2020Hybrid integration LNOI modulator1.3 cm48 GHz2.4 V·cm1.8 dB

      220 Gbit/s QPSK

      320 Gbit/s 16-QAM

      [81]2024Hybrid integration LNOI modulator15.0 μm16 GHz3.89 pm/V1.5 dB45 Gbit/s OOK
      [83]20162D material thermal optical modulator3.0 μm0.48 nm/mW
      [86]20202D material thermal optical modulator5.0 μm0.74 nm/mW
      [89]20162D material EA modulator50.0 μm5.9 GHz1.5 dB/V3.8 dB10 Gbit/s OOK
      [90]20202D material EA modulator75.0 μm>14 GHz~4.0 dB50 Gbit/s OOK
      [91]20212D material EA modulator60 μm39 GHz1.49 dB/V0.042 dB40 Gbit/s OOK
      [95]20182D material ER modulator400 μm5 GHz0.28 V·cm9.45 dB10 Gbit/s OOK
      [96]20182D material ER modulator40 μm0.129 V·cm
      [104]20182D material all optical modulator100 μm0.0275 dB/μm
      [99]20212D material all optical modulator9.7 μm700 Hz0.41 dB/μm~5 dB
    Tools

    Get Citation

    Copy Citation Text

    Changhao Han, Haoyu Wang, Haowen Shu, Jun Qin, Xingjun Wang. Latest Research Progress in Silicon-Based Modulators (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: May. 13, 2024

    Accepted: Jun. 20, 2024

    Published Online: Aug. 5, 2024

    The Author Email: Wang Xingjun (xjwang@pku.edu.cn)

    DOI:10.3788/AOS241008

    CSTR:32393.14.AOS241008

    Topics