Chinese Journal of Lasers, Volume. 43, Issue 4, 405003(2016)
Analysis of Thermal Properties in a Polarization-Maintaining Air-Core Photonic Bandgap Fiber
[1] [1] Chow W W, Gea-Banaciloche J, Pedrotti L M, et al.. The ring laser gyro[J]. Reviews of Modern Physics, 1985, 57(1): 61-104.
[3] [3] Iwatsuki K, Hotate K, Higasshiguchi M. Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro[J]. Appl Opt, 1986, 25 (25): 2606-2612.
[4] [4] Ma H, Chen Z, Yang Z, et al.. Polarization-induced noise in resonator fiber optic gyro[J]. Appl Opt, 2012, 51(28): 6708-6717.
[5] [5] Iwatsuki K, Hotate K, Higashiguchi M. Kerr effect in an optical passive ring-resonator gyro[J]. Journal of Lightwave Technology, 1986, 4(6): 645-651.
[6] [6] Iwatsuki K, Hotate K, Higashiguchi M. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro[J]. Appl Opt, 1984, 23(21): 3916-3924.
[7] [7] Ma H, Chen Z, Jin Z. Single-polarization coupler based on air-core photonic bandgap fibers and implications for resonant fiber optic gyro[J]. Journal of Lightwave Technology, 2014, 32(1): 46-54.
[8] [8] Takiguchi K, Hotate K. Removal of lock-in phenomenon in optical passive ring-resonator gyro by using optical Kerr effect in fiber resonator [J]. IEEE Photon Technol Lett, 1992, 4(7): 810-812.
[9] [9] Wang X, He Z, Hotate K. Reduction of polarization fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90 degrees polarization axis rotated splices[J]. Opt Express, 2010, 18(2): 1677-1683.
[10] [10] Ma H, Yu X, Jin Z. Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizer[J]. Opt Lett, 2012, 37(16): 3342-3344.
[11] [11] Yan Y, Ma H, Jin Z. Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber[J]. Opt Express, 2015, 23 (3): 2002-2009.
[13] [13] Huang Chongde, Chen Dijun, Cai Haiwen, et al.. Laser frequency stabilization technology based on hollow-core photonics crystal fiber gas cell[J]. Chinese J Lasers, 2014, 41(8): 0802006.
[14] [14] Kim H K, Michel J F Digonnet, Gordon S Kino. Air-core photonic bandgap fiber-optic gyroscope[J]. Journal of Lightwave Technology, 2006, 24(8): 3169-3174.
[15] [15] Sanders G A, Strandjord L K, Qiu T. Hollow core fiber optic ring resonator for rotation sensing[C]. In Proc OFS, 2006, ME6.
[16] [16] Terrel M A, Digonnet M J F, Fan S. Resonant fiber optic gyroscope using an air-core fiber[J]. Journal of Lightwave Technology, 2012, 30(7): 931-937.
[17] [17] Feng Lishuang, Deng Xuewen, Ren Xiaoyuan, et al.. Researcher on hollow core photonic bandgap fiber ring resonator based on microoptics structure[J]. Acta Optica Sinica, 2012, 32(8): 0806002.
[19] [19] Cao Ye, Cui Danning, Tong Zhenrong, et al.. Temperature sensing properties of octagonal photonic crystal fiber[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2013, 46(4): 100-106.
[20] [20] Song J, Sun K, Li S, et al.. Phase sensitivity to temperature of the guiding mode in polarization-maintaining photonic crystal fiber[J]. Appl Opt, 2015, 54 (24): 7330-7334.
[21] [21] Zhao H, Chen M, Li G. Temperature dependence of birefringence in polarization-maintaining photonic crystal fibres[J]. Chinese Physics B, 2012, 21(6): 068404.
[22] [22] Rahman B M A, Namassivayane K, Agrawal A, et al.. Characterizations of photonic crystal fibers by using a full-vectorial finite element method[C]. The International Society for Optical Engineering, 2006, 6369: 636904.
[23] [23] Wang Erlei, Jiang Haiming, Xie Kang, et al.. Photonic crystal fibers with high nonlinearity, large birefringence and multiple zero dispersionwavelength[ J]. Acta Physica Sinica, 2014, 63(13): 134210.
[24] [24] Ma H, Chen Z, Jin Z. Single-polarization coupler based on air-core photonic bandgap fibers and implications for resonant fiber optic gyro[J]. Journal of Lightwave Technology, 2014, 32(1): 46-54.
[25] [25] Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers[J]. IEEE Photonics Technology Letters, 2003, 15(2): 236-238.
[26] [26] Ma P, Song N, Jin J, et al.. Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers[J]. Opt Laser Technol, 2012, 44(6): 1829-1833.
[28] [28] Wegmuller M, Legre M, Gisin N, et al.. Detailed polarization properties comparison for three completely different species of highly birefringent fibers[C]. Optical Fiber Measurements, 2004, Technical Digest: Symposium on, 2004: 119-122.
[29] [29] Zhang F, Lit W Y. Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers[J]. Appl Opt, 1993, 32(13): 2213-2218.
[30] [30] Zhao X, Louveau J, Chamoun J, et al.. Thermal sensitivity of the birefringence of air-core fibers and implications for the RFOG[J]. Journal of Lightwave Technology, 2014, 32(14): 2577-2581.
[31] [31] Désévédavy F, Renversez G, Troles J, et al.. Chalcogenide glass hollow core photonic crystal fibers[J]. Opt Materials, 2010, 32(11): 1532- 1539.
Get Citation
Copy Citation Text
Li Xuyou, Xu Zhenlong, Yang Hanrui, Liu Pan, Ling Weiwei. Analysis of Thermal Properties in a Polarization-Maintaining Air-Core Photonic Bandgap Fiber[J]. Chinese Journal of Lasers, 2016, 43(4): 405003
Category: Optical communication
Received: Oct. 1, 2015
Accepted: --
Published Online: Apr. 5, 2016
The Author Email: Xuyou Li (lixuyou@hrbeu.edu.cn)