Journal of Optoelectronics · Laser, Volume. 36, Issue 7, 722(2025)
Lightweight concrete crack segmentation algorithm integrating feature interaction and attention
[4] [4] KHERADMANDI N, MEHRANFAR V. A critical review and comparative study on image segmentation-based techniques for pavement crack detection[J]. Construction and Building Materials, 2022, 321:126162.
[5] [5] KANG D, BENIPAL S S, GOPAL D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118:103291.
[7] [7] LIU Y, YAO J, LU X, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338:139-153.
[9] [9] SUN X, XIE Y, JIANG L, et al. DMA-Net: DeepLab with multi-scale attention for pavement crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10):18392-18403.
[10] [10] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Berlin: Springer-Verlag, 2018:801-818.
[11] [11] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]//IEEE/CVF International Conference on Computer Vision, October 27-November 2, 2019, Seoul, South Korea. Los Alamitos: IEEE, 2019:1314-1324.
[12] [12] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2015-11-23)[2024-04-17]. https://arxiv.org/abs/1511.07122.
[13] [13] LV W, XU S, ZHAO Y, et al. Detrs beat YOLOs on real-time object detection[EB/OL]. (2023-04-17)[2024-04-17]. https://arxiv.org/abs/2304.08069.
[14] [14] LIU Y, SHAO Z, TENG Y, et al. NAM: Normalization-based attention module[EB/OL]. (2021-11-24)[2024-04-17]. https://arxiv.org/abs/2111.12419.
[15] [15] PAN X, GE C, LU R, et al. On the integration of self-attention and convolution[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-24, 2022, New Orleans, LA. Los Alamitos: IEEE, 2022:815-825.
[16] [16] LI J, WEN Y, HE L. SCConv: Spatial and channel reconstruction convolution for feature redundancy[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 17-24, 2023, Vancouver, Canada. Los Alamitos: IEEE, 2023:6153-6162.
[17] [17] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: Retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10)[2024-04-17]. https://arxiv.org/abs/2112.05561.
[18] [18] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI. New York: IEEE, 2017:1251-1258.
[19] [19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT. New York: IEEE, 2018:7132-7141.
[20] [20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems(NIPS), December 4-9, 2017, Long Beach, CA. LA Jolla: NIPS, 2017, 30:6000-6010.
[21] [21] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//European Conference on Computer Vision (ECCV), September 8-14, 2018, Munich, Germany. Berlin: Springer-Verlag, 2018:3-19.
[22] [22] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, July 7-9, 2015, Lille, France. San Diego: JMIR-Journal Machine Learning Research, 2015:448-456.
[23] [23] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: Small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10):2323.
[24] [24] WANG W, SU C. Automatic concrete crack segmentation model based on transformer[J]. Automation in Construction, 2022, 139:104275.
[25] [25] YANG N, LI Y, MA R. An efficient method for detecting asphalt pavement cracks and sealed cracks based on a deep data-driven model[J]. Applied Sciences, 2022, 12(19):10089.
[26] [26] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//IEEE/CVF Winter Conference on Applications of Computer Vision, January 5-9, 2021, Electr Network. New York: IEEE, 2021:3139-3148.
[27] [27] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention(MICCAI) 2015:18th International Conference, October 5-9, 2015, Munich, Germany. Berlin: Springer-Verlag, 2015:234-241.
[28] [28] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10):3349-3364.
[29] [29] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
[30] [30] XIE E, WANG W, YU Z, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems, December 6-14, 2021, Online Conference. Red Hook: Curran Associates Inc. , 2021, 34:12077-12090.
Get Citation
Copy Citation Text
PENG Yaopan, ZHANG Rongfen, LIU Yuhong, OUYANG Yuxuan. Lightweight concrete crack segmentation algorithm integrating feature interaction and attention[J]. Journal of Optoelectronics · Laser, 2025, 36(7): 722
Category:
Received: Feb. 4, 2024
Accepted: Jun. 24, 2025
Published Online: Jun. 24, 2025
The Author Email: ZHANG Rongfen (rfzhang@gzu.edu.cn)