Photonics Research, Volume. 9, Issue 8, 1446(2021)
Photonic extreme learning machine by free-space optical propagation
[1] S. Haykin. Neural Networks and Learning Machines(2008).
[2] E. Strubell, A. Ganesh, A. McCallum. Energy and policy considerations for deep learning in NLP(2019).
[3] G. Wetzstein, A. Ozcan, S. Gigan, S. Fan, D. Englund, M. Soljačić, C. Denz, D. A. B. Miller, D. Psaltis. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).
[4] N. H. Farhat, D. Psaltis, A. Prata, E. Paek. Optical implementation of the Hopfield model. Appl. Opt., 24, 1469-1475(1985).
[5] D. Psaltis, D. Brady, K. Wagner. Adaptive optical networks using photorefractive crystals. Appl. Opt., 27, 1752-1759(1988).
[6] C. Denz. Optical Neural Networks(1998).
[7] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, M. Soljacic. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).
[8] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).
[9] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333-1338(2019).
[10] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).
[11] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y. C. Chen, P. Chen, G. B. Jo, J. Liu, S. Du. All-optical neural network with nonlinear activation functions. Optica, 6, 1132-1137(2019).
[12] A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M.-A. Nahmias, B. J. Shastri, P. R. Prucnal. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep., 7, 7430(2017).
[13] J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, W. H. P. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).
[14] J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).
[15] X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, D. J. Moss. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).
[16] X. Xu, M. Tan, B. Corcoran, J. Wu, T. G. Nguyen, A. Boes, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. G. Hicks, D. J. Moss. Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon. Rev., 14, 2000070(2020).
[17] J. Spall, X. Guo, T. D. Barrett, A. I. Lvovsky. Fully reconfigurable coherent optical vector-matrix multiplication. Opt. Lett., 45, 5752-5755(2020).
[18] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 8, 12324(2018).
[19] M. Miscuglio, Z. Hu, S. Li, J. George, R. Capanna, P. M. Bardet, P. Gupta, V. J. Sorger. Massively parallel amplitude-only Fourier neural network. Optica, 7, 1812-1819(2020).
[20] C. Wu, H. Yu, S. Lee, R. Peng, I. Takeuchi, M. Li. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun., 12, 96(2021).
[21] T. W. Hughes, I. A. Williamson, M. Minkov, S. Fan. Wave physics as an analog recurrent neural network. Sci. Adv., 5, eaay6946(2019).
[22] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 9, 021032(2019).
[23] T. W. Hughes, M. Minkov, Y. Shi, S. Fan. Training of photonic neural networks through
[24] M. Lukosevicius, H. Jaeger. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev., 3, 127-149(2009).
[25] C. Gallicchio, A. Micheli, L. Pedrelli. Deep reservoir computing: a critical experimental analysis. Neurocomputing, 268, 87-99(2017).
[26] G. Neofotistos, M. Mattheakis, G. D. Barmparis, J. Hizanidis, G. P. Tsironis, E. Kaxiras. Machine learning with observers predicts complex spatiotemporal behavior. Front. Phys., 7, 24(2019).
[27] D. Brunner, M. C. Soriano, C. Mirasso, I. Fischer. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun., 4, 1364(2013).
[28] Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, S. Massar. High-performance photonic reservoir computer based on a coherently driven passive cavity. Optica, 2, 438-446(2015).
[29] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, M. Jacquot. High-speed photonic reservoir computing using a time-delay based architecture: million words per second classification. Phys. Rev. X, 7, 011015(2017).
[30] P. Antonik, N. Marsal, D. Brunner, D. Rontani. Human action recognition with a large-scale brain-inspired photonic computer. Nat. Mach. Intell., 1, 530-537(2019).
[31] A. Röhm, L. Jaurigue, K. Lüdge. Reservoir computing using laser networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700108(2020).
[32] U. Paudel, M. Luengo-Kovac, J. Pilawa, T. J. Shaw, G. C. Valley. Classification of time-domain waveforms using a speckle-based optical reservoir computer. Opt. Express, 28, 1225-1237(2020).
[33] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, S. Gigan. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X, 10, 041037(2020).
[34] D. Pierangeli, V. Palmieri, G. Marcucci, C. Moriconi, G. Perini, M. De Spirito, M. Papi, C. Conti. Living optical random neural network with three dimensional tumor spheroids for cancer morphodynamics. Commun. Phys., 3, 160(2020).
[35] G. B. Huang, Q. Y. Zhu, C. K. Siew. Extreme learning machine: theory and applications. Neurocomputing, 70, 489-501(2006).
[36] G. B. Huang, H. Zhou, X. Ding, R. Zhang. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst., Man, Cybern. B, Cybern., 42, 513-529(2012).
[37] W. F. Schmidt, M. A. Kraaijveld, R. P. Duin. Feed forward neural networks with random weights. International Conference on Pattern Recognition(1992).
[38] Y. H. Pao, G. H. Park, D. J. Sobajic. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 6, 163-180(1994).
[39] J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. Neural Process. Lett., 9, 293-300(1999).
[40] S. An, W. Liu, S. Venkatesh. Face recognition using kernel ridge regression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1-7(2007).
[41] A. Saade, F. Caltagirone, I. Carron, L. Daudet, A. Dremeau, S. Gigan, F. Krzakala. Random projections through multiple optical scattering: approximating kernels at the speed of light. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6215-6219(2016).
[42] S. Sunada, K. Kanno, A. Uchida. Using multidimensional speckle dynamics for high-speed, large-scale, parallel photonic computing. Opt. Express, 28, 30349-30361(2020).
[43] G. Marcucci, D. Pierangeli, C. Conti. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett., 125, 093901(2020).
[44] U. Tegin, M. Yildirim, I. Oguz, C. Moser, D. Psaltis. Scalable optical learning operator(2020).
[45] H. Zhang, M. Gu, X. D. Jiang, J. Thompson, H. Cai, S. Paesani, R. Santagati, A. Laing, Y. Zhang, M. H. Yung, Y. Z. Shi, F. K. Muhammad, G. Q. Lo, X. S. Luo, B. Dong, D. L. Kwong, L. C. Kwek, A. Q. Liu. An optical neural chip for implementing complex-valued neural network. Nat. Commun., 12, 457(2021).
[46] J. W. Goodman. Introduction to Fourier Optics(2005).
[47] L. C. C. Kasun, H. Zhou, G. B. Huang, C. M. Vong. Representational learning with extreme learning machine for big data. IEEE Intell. Syst., 28, 31-34(2013).
[48] D. Pierangeli, M. Rafayelyan, C. Conti, S. Gigan. Scalable spin-glass optical simulator. Phys. Rev. Appl., 15, 034087(2021).
[49] J. Shawe-Taylor, N. Cristianini. Kernel Methods for Pattern Analysis(2004).
[50] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278-2324(1998).
[51] T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu, J. Fan, L. Fang, X. Lin, Q. Dai. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 123, 023901(2019).
[52] Y. Luo, D. Mengu, N. T. Yardimci, Y. Rivenson, M. Veli, M. Jarrahi, A. Ozcan. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl., 8, 112(2019).
[53] O. Tzang, E. Niv, S. Singh, S. Labouesse, G. Myatt, R. Piestun. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics, 13, 788-793(2019).
[54] B. Braverman, A. Skerjanc, N. Sullivan, R. W. Boyd. Fast generation and detection of spatial modes of light using an acousto-optic modulator. Opt. Express, 28, 29112-29121(2020).
[55] D. Piccinotti, K. F. MacDonald, S. Gregory, I. Youngs, N. I. Zheludev. Artificial intelligence for photonics and photonic materials. Rep. Prog. Phys., 84, 012401(2021).
[56] G. Genty, L. Salmela, J. M. Dudley, D. Brunner, A. Kokhanovskiy, S. Kobtsev, S. K. Turitsyn. Machine learning and applications in ultrafast photonics. Nat. Photonics, 15, 91-101(2020).
[57] S. H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz. Data-driven discovery of partial differential equations. Sci. Adv., 3, e1602614(2017).
[58] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, Y. Yamamoto. A fully-programmable 100-spin coherent Ising machine with all-to-all connections. Science, 354, 614-617(2016).
[59] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K.-I. Kawarabayashi, K. Inoue, S. Utsunomiya, H. Takesue. A coherent Ising machine for 2000-node optimization problems. Science, 354, 603-606(2016).
[60] F. Böhm, G. Verschaffelt, G. Van der Sande. A poor—coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat. Commun., 10, 3538(2019).
[61] D. Pierangeli, G. Marcucci, C. Conti. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett., 122, 213902(2019).
[62] D. Pierangeli, G. Marcucci, C. Conti. Adiabatic evolution on a spatial-photonic Ising machine. Optica, 7, 1535-1543(2020).
[63] M. Prabhu, C. Roques-Carmes, Y. Shen, N. Harris, L. Jing, J. Carolan, R. Hamerly, T. Baehr-Jones, M. Hochberg, V. Čeperić, J. D. Joannopoulos, D. R. Englund, M. Soljačić. Accelerating recurrent Ising machines in photonic integrated circuits. Optica, 7, 551-558(2020).
[64] K. P. Kalinin, A. Amo, J. Bloch, N. G. Berloff. Polaritonic XY-Ising machine. Nanophotonics, 9, 4127-4138(2020).
[65] Y. Okawachi, M. Yu, J. K. Jang, X. Ji, Y. Zhao, B. Y. Kim, M. Lipson, A. L. Gaeta. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun., 11, 4119(2020).
[66] A. Di Falco, V. Mazzone, A. Cruz, A. Fratalocchi. Perfect secrecy cryptography via mixing of chaotic waves in irreversible time-varying silicon chips. Nat. Commun., 10, 5827(2019).
Get Citation
Copy Citation Text
Davide Pierangeli, Giulia Marcucci, Claudio Conti, "Photonic extreme learning machine by free-space optical propagation," Photonics Res. 9, 1446 (2021)
Category: Instrumentation and Measurements
Received: Feb. 25, 2021
Accepted: May. 23, 2021
Published Online: Aug. 11, 2021
The Author Email: Davide Pierangeli (davide.pierangeli@roma1.infn.it)