Laser & Optoelectronics Progress, Volume. 57, Issue 11, 111413(2020)
Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications
[1] Zorba V, Stratakis E, Barberoglou M et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 20, 4049-4054(2008).
[2] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 3, 178-182(2007).
[3] Liu M J, Wang S T, Wei Z X et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 21, 665-669(2009).
[4] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 414, 33-34(2001).
[5] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 432, 36(2004).
[6] Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 36, 1350-1368(2007).
[7] Zhang X, Shi F, Niu J et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 18, 621-633(2008).
[8] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 54, 3387-3399(2015).
[9] Nakajima A, Fujishima A, Hashimoto K et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Advanced Materials, 11, 1365-1368(1999).
[10] Zhang L S, Kwok H, Li X C et al. Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application[J]. ACS Applied Materials & Interfaces, 9, 39728-39735(2017).
[13] Jeevahan J, Chandrasekaran M, Britto Joseph G et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 15, 231-250(2018).
[14] Simpson J T, Hunter S R, Aytug T. Superhydrophobic materials and coatings: a review[J]. Reports on Progress in Physics, 78, 086501(2015).
[15] Li J S, Ueda E, Paulssen D et al. Slippery lubricant-infused surfaces: properties and emerging applications[J]. Advanced Functional Materials, 29, 1802317(2019).
[16] Dong Z Q, Schumann M F, Hokkanen M J et al. Superoleophobicity: superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface[J]. Advanced Materials, 30, 1870338(2018).
[17] Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 477, 443-447(2011).
[18] Amini S, Kolle S, Petrone L et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 357, 668-673(2017).
[19] Wu Q N, Yang C D, Su C et al. Slippery liquid-attached surface for robust biofouling resistance[J]. ACS Biomaterials Science & Engineering, 6, 358-366(2020).
[20] Sousa M F B, Loureiro H C, Bertran C A. Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel[J]. Surface and Coatings Technology, 382, 125160(2020).
[21] Guo T Q, Che P D, Heng L P et al. Slippery surfaces: anisotropic slippery surfaces: electric-driven smart control of a drop's slide[J]. Advanced Materials, 28, 6999-7007(2016).
[22] Zeng X H, Wu D C, Fu R W. Preparation and characterization of petroleum-pitch-based carbon aerogels[J]. Journal of Applied Polymer Science, 112, 309-314(2009).
[23] Kim P, Wong T S, Alvarenga J et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 6, 6569-6577(2012).
[24] Xiao R, Miljkovic N, Enright R et al. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J]. Scientific Reports, 3, 1988(2013).
[26] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).
[27] Wu D, Wang J N, Wu S Z et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 21, 2927-2932(2011).
[28] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).
[29] Wang J N, Zhang Y L, Liu Y et al. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications[J]. Nanoscale, 7, 7101-7114(2015).
[30] Yong J L, Chen F, Yang Q et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1701370(2018).
[31] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).
[32] Yong J L, Fang Y, Chen F et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 389, 1148-1155(2016).
[33] Yong J L, Yang Q, Chen F et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2, 1400388(2015).
[34] Yong J L, Chen F, Yang Q et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 3, 10703-10709(2015).
[35] Yong J L, Chen F, Yang Q et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 119, 837-844(2015).
[37] Liu Y Q, Zhang Y L, Fu X Y et al. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation[J]. ACS Applied Materials & Interfaces, 7, 20930-20936(2015).
[39] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).
[40] Fang Y, Yong J L, Chen F et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 122, 827(2016).
[41] Liu Y Q, Jiao Z Z, Zhang Y L et al. Kraft mesh origami for efficient oil-water separation[J]. Langmuir, 35, 815-823(2019).
[42] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).
[44] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 1, 041303(2014).
[45] Stuart B C, Feit M D, Herman S et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 53, 1749-1761(1996).
[47] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 109, 1-10(1997).
[48] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[49] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).
[50] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 9, 3338-3366(2017).
[51] Babu D J, Mail M, Barthlott W et al. Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water (salvinia effect)[J]. Advanced Materials Interfaces, 4, 1700273(2017).
[52] Yoo J H, Kwon H J, Paeng D et al. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal[J]. Nanotechnology, 27, 145604(2016).
[53] Xu Z G, Zhao Y, Wang H X et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation[J]. ACS Applied Materials & Interfaces, 8, 5661-5667(2016).
[54] Xue C H, Li Y R, Hou J L et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 3, 10248-10253(2015).
[55] Li J, Long Y F, Xu C C et al. Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability[J]. Applied Surface Science, 433, 374-380(2018).
[57] Baldacchini T, Carey J E, Zhou M et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 22, 4917-4919(2006).
[59] Yong J L, Yang Q, Chen F et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 111, 243-249(2013).
[60] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 117, 033103(2015).
[61] Yong J L, Chen F, Yang Q et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 117, 24907-24912(2013).
[62] Yong J L, Chen F, Yang Q et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 29, 3274-3279(2013).
[63] Lu Y, Yu L D, Zhang Z et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advances, 7, 11170-11179(2017).
[64] Fang Y, Yong J L, Chen F et al. Anisotropic superhydrophobicity: bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 5, 1870024(2018).
[65] Yong J L, Chen F, Yang Q et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 51, 9813-9816(2015).
[66] Zhang J Z, Yong J L, Yang Q et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir, 35, 3295-3301(2019).
[67] Bai X, Yang Q, Fang Y et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 383, 123143(2020).
[69] Yong J L, Chen F, Yang Q et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 3, 9379-9384(2015).
[70] Huo J L, Yang Q, Chen F et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).
[71] Yong J L, Chen F, Yang Q et al. Controllable underwater anisotropic oil-wetting[J]. Applied Physics Letters, 105, 071608(2014).
[72] Cheng Y, Yang Q, Fang Y et al. Underwater superoleophobic tracks: underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 6, 1970066(2019).
[73] Li G Q, Zhang Z, Wu P C et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 6, 37463-37471(2016).
[74] Yong J L, Chen F, Li M J et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 5, 25249-25257(2017).
[75] Tuteja A, Choi W, Ma M et al. Designing superoleophobic surfaces[J]. Science, 318, 1618-1622(2007).
[76] Pendurthi A, Movafaghi S, Wang W et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials & Interfaces, 9, 25656-25661(2017).
[77] Liu T, Kim C J. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 346, 1096-1100(2014).
[78] Tuteja A, Choi W, Mabry J M et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 18200-18205(2008).
[79] Chen H W, Zhang P F, Zhang L W et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 532, 85-89(2016).
[80] Yu C M, Zhu X B, Li K et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 27, 1701605(2017).
[81] Irajizad P, Ray S, Farokhnia N et al. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces[J]. Advanced Materials Interfaces, 4, 1700009(2017).
[82] Yong J L, Huo J L, Yang Q et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 5, 1870029(2018).
[83] Yong J L, Chen F, Yang Q et al. Liquid repellence: nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 4, 1700552(2017).
[84] Jiao Y L, Lv X, Zhang Y Y et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 11, 1370-1378(2019).
[85] Lv X, Jiao Y L, Wu S Z et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 11, 20574-20580(2019).
[86] Wang P, Lu Z, Zhang D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrierto corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 93, 159-166(2015).
[87] Manna U, Raman N, Welsh M A et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach[J]. Advanced Functional Materials, 26, 3599-3611(2016).
[88] Luo J, Geraldi N, Guan J et al. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves[J]. Physical Review Applied, 7, 014017(2017).
[89] Zhou X, Lee Y Y. Chong K S L, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance[J]. Journal of Materials Chemistry B, 6, 440-448(2018).
[90] Juuti P, Haapanen J, Stenroos C et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate[J]. Applied Physics Letters, 110, 161603(2017).
[91] Xiao L L, Li J S, Mieszkin S et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 5, 10074-10080(2013).
[93] Li J S, Kleintschek T, Rieder A et al. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications[J]. ACS Applied Materials & Interfaces, 5, 6704-6711(2013).
[94] Zouaghi S, Six T, Bellayer S et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing[J]. ACS Applied Materials & Interfaces, 9, 26565-26573(2017).
[95] Subramanyam S B, Rykaczewski K, Varanasi K K. Ice adhesion on lubricant-impregnated textured surfaces[J]. Langmuir, 29, 13414-13418(2013).
[97] Manna U, Lynn D M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J]. Advanced Materials, 27, 3007-3012(2015).
[98] Wu S Z, Zhou L L, Chen C et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 35, 13915-13922(2019).
Get Citation
Copy Citation Text
Yao Fang, Jiale Yong, Jinglan Huo, Qing Yang, Yang Cheng, Jie Liang, Feng Chen. Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111413
Category: Lasers and Laser Optics
Received: Dec. 27, 2019
Accepted: Mar. 9, 2020
Published Online: Jun. 2, 2020
The Author Email: Yang Qing (yangqing@mail.xjtu.edu.cn), Chen Feng (chenfeng@mail.xjtu.edu.cn)