Chinese Journal of Lasers, Volume. 51, Issue 8, 0818001(2024)
Design and Performance of Hefei Infrared Free-Electron Laser Facility
[1] Lü Y X, Zhang T S, Fan G Q et al. Monitoring of pollution characteristics of atmospheric greenhouse gases using Fourier infrared system[J]. Chinese Journal of Lasers, 50, 0611001(2023).
[2] Hao Q, Tang X, Chen M L. Infrared optoelectrical detection technology based on mercury chalcogenide colloidal quantum dots[J]. Acta Optica Sinica, 43, 1500001(2023).
[3] Cui Y L, Zhou Z Y, Huang W et al. Progress and prospect of mid-infrared fiber laser technology[J]. Acta Optica Sinica, 42, 0900001(2022).
[4] Yue Y S, Zhang Z S Y, Zhu S C et al. Influencing factors of mid-infrared spectrum blood glucose detection[J]. Laser & Optoelectronics Progress, 60, 2430001(2023).
[5] Wei X K, Wu X, Lu X S et al. Far infrared spectrum of antithrombotic drug Xarelto[J]. Chinese Journal of Lasers, 50, 1507207(2023).
[6] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).
[7] Gardiner D J, Graves P R, Bowley H J[M]. Practical Raman spectroscopy(1989).
[8] Suëtaka W, Yates J T[M]. Surface infrared and Raman spectroscopy: methods and applications(1995).
[9] Jiang Y X, Li G, Ye J Y et al. Progress in the methods and research of electrochemical in-situ infrared spectroscopy[J]. Journal of Xiamen University (Natural Science), 60, 191-207(2021).
[10] Gaida C, Gebhardt M, Heuermann T et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).
[11] Yu Y, Gai X, Ma P et al. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide[J]. Laser & Photonics Reviews, 8, 792-798(2014).
[12] Seidel M, Xiao X, Hussain S A et al. Multi-watt, multi-octave, mid-infrared femtosecond source[J]. Science Advances, 4, eaaq1526(2018).
[13] Brandstetter M, Volgger L, Genner A et al. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor[J]. Applied Physics B, 110, 233-239(2013).
[14] Haase K, Kröger-Lui N, Pucci A et al. Advancements in quantum cascade laser-based infrared microscopy of aqueous media[J]. Faraday Discussions, 187, 119-134(2016).
[15] Schwaighofer A, Montemurro M, Freitag S et al. Beyond Fourier transform infrared spectroscopy: external cavity quantum cascade laser-based mid-infrared transmission spectroscopy of proteins in the amide I and amide II region[J]. Analytical Chemistry, 90, 7072-7079(2018).
[16] Griffiths P R, de Haseth J A[M]. Fourier transform infrared spectrometry(2006).
[17] Duncan W D, Williams G P. Infrared synchrotron radiation from electron storage rings[J]. Applied Optics, 22, 2914-2923(1983).
[18] Hu C S, Wang X, Qi Z M et al. The new infrared beamline at NSRL[J]. Infrared Physics & Technology, 105, 103200(2020).
[19] Zhou X J, Zhong J J, Dong J M et al. Applications of NFPS/SSRF BL01B synchrotron infrared beamline station[J]. Spectroscopy and Spectral Analysis, 38, 29-30(2018).
[20] Thomas T, Hollricher O, Toporski J[M]. Confocal Raman microscopy(2011).
[21] Blackie E J, le Ru E C, Etchegoin P G. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules[J]. Journal of the American Chemical Society, 131, 14466-14472(2009).
[22] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).
[23] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy[J]. Journal of the American Chemical Society, 143, 9699-9717(2021).
[24] Fang C, Frontiera R R, Tran R et al. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy[J]. Nature, 462, 200-204(2009).
[25] Liu Y, Han Z K, Gewinner S et al. Adatom bonding sites in a nickel-Fe3O4(001) single-atom model catalyst and O2 reactivity unveiled by surface action spectroscopy with infrared free-electron laser light[J]. Angewandte Chemie International Edition, 61, e202202561(2022).
[26] Li H T, He Z G, Wu F F et al. Hefei infrared free-electron laser facility[J]. Chinese Journal of Lasers, 48, 1700001(2021).
[27] Zhu Y P, Xu Y F, Li H T et al. Study on spectral gap in FELiChEM infrared free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1031, 166499(2022).
[29] Gensch M, Bittner L, Chesnov A et al. New infrared undulator beamline at FLASH[J]. Infrared Physics & Technology, 51, 423-425(2008).
[30] Zhao K H, Zhong X H[M]. Optics(1984).
Get Citation
Copy Citation Text
Chen Gao, Jun Bao, Yingui Zhou, Yuanjun Yang, Song Sun, Xiaodi Zhu, Heting Li, Shancai Zhang, Lin Wang. Design and Performance of Hefei Infrared Free-Electron Laser Facility[J]. Chinese Journal of Lasers, 2024, 51(8): 0818001
Category:
Received: Jul. 6, 2023
Accepted: Sep. 5, 2023
Published Online: Mar. 29, 2024
The Author Email: Gao Chen (gaochen@ucas.edu.cn)
CSTR:32183.14.CJL230996