Chinese Journal of Lasers, Volume. 51, Issue 8, 0818001(2024)

Design and Performance of Hefei Infrared Free-Electron Laser Facility

Chen Gao1,2、*, Jun Bao1, Yingui Zhou1, Yuanjun Yang1,3, Song Sun1,4, Xiaodi Zhu1, Heting Li1, Shancai Zhang1, and Lin Wang1
Author Affiliations
  • 1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui , China
  • 2School of Physical Sciences, University of Chinese Academy of Science, Beijing 101408, China
  • 3School of Physics, Hefei University of Technology, Hefei 230009, Anhui , China
  • 4School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, Anhui , China
  • show less
    References(30)

    [1] Lü Y X, Zhang T S, Fan G Q et al. Monitoring of pollution characteristics of atmospheric greenhouse gases using Fourier infrared system[J]. Chinese Journal of Lasers, 50, 0611001(2023).

    [2] Hao Q, Tang X, Chen M L. Infrared optoelectrical detection technology based on mercury chalcogenide colloidal quantum dots[J]. Acta Optica Sinica, 43, 1500001(2023).

    [3] Cui Y L, Zhou Z Y, Huang W et al. Progress and prospect of mid-infrared fiber laser technology[J]. Acta Optica Sinica, 42, 0900001(2022).

    [4] Yue Y S, Zhang Z S Y, Zhu S C et al. Influencing factors of mid-infrared spectrum blood glucose detection[J]. Laser & Optoelectronics Progress, 60, 2430001(2023).

    [5] Wei X K, Wu X, Lu X S et al. Far infrared spectrum of antithrombotic drug Xarelto[J]. Chinese Journal of Lasers, 50, 1507207(2023).

    [6] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [7] Gardiner D J, Graves P R, Bowley H J[M]. Practical Raman spectroscopy(1989).

    [8] Suëtaka W, Yates J T[M]. Surface infrared and Raman spectroscopy: methods and applications(1995).

    [9] Jiang Y X, Li G, Ye J Y et al. Progress in the methods and research of electrochemical in-situ infrared spectroscopy[J]. Journal of Xiamen University (Natural Science), 60, 191-207(2021).

    [10] Gaida C, Gebhardt M, Heuermann T et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 7, 94(2018).

    [11] Yu Y, Gai X, Ma P et al. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide[J]. Laser & Photonics Reviews, 8, 792-798(2014).

    [12] Seidel M, Xiao X, Hussain S A et al. Multi-watt, multi-octave, mid-infrared femtosecond source[J]. Science Advances, 4, eaaq1526(2018).

    [13] Brandstetter M, Volgger L, Genner A et al. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor[J]. Applied Physics B, 110, 233-239(2013).

    [14] Haase K, Kröger-Lui N, Pucci A et al. Advancements in quantum cascade laser-based infrared microscopy of aqueous media[J]. Faraday Discussions, 187, 119-134(2016).

    [15] Schwaighofer A, Montemurro M, Freitag S et al. Beyond Fourier transform infrared spectroscopy: external cavity quantum cascade laser-based mid-infrared transmission spectroscopy of proteins in the amide I and amide II region[J]. Analytical Chemistry, 90, 7072-7079(2018).

    [16] Griffiths P R, de Haseth J A[M]. Fourier transform infrared spectrometry(2006).

    [17] Duncan W D, Williams G P. Infrared synchrotron radiation from electron storage rings[J]. Applied Optics, 22, 2914-2923(1983).

    [18] Hu C S, Wang X, Qi Z M et al. The new infrared beamline at NSRL[J]. Infrared Physics & Technology, 105, 103200(2020).

    [19] Zhou X J, Zhong J J, Dong J M et al. Applications of NFPS/SSRF BL01B synchrotron infrared beamline station[J]. Spectroscopy and Spectral Analysis, 38, 29-30(2018).

    [20] Thomas T, Hollricher O, Toporski J[M]. Confocal Raman microscopy(2011).

    [21] Blackie E J, le Ru E C, Etchegoin P G. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules[J]. Journal of the American Chemical Society, 131, 14466-14472(2009).

    [22] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [23] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy[J]. Journal of the American Chemical Society, 143, 9699-9717(2021).

    [24] Fang C, Frontiera R R, Tran R et al. Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy[J]. Nature, 462, 200-204(2009).

    [25] Liu Y, Han Z K, Gewinner S et al. Adatom bonding sites in a nickel-Fe3O4(001) single-atom model catalyst and O2 reactivity unveiled by surface action spectroscopy with infrared free-electron laser light[J]. Angewandte Chemie International Edition, 61, e202202561(2022).

    [26] Li H T, He Z G, Wu F F et al. Hefei infrared free-electron laser facility[J]. Chinese Journal of Lasers, 48, 1700001(2021).

    [27] Zhu Y P, Xu Y F, Li H T et al. Study on spectral gap in FELiChEM infrared free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1031, 166499(2022).

    [29] Gensch M, Bittner L, Chesnov A et al. New infrared undulator beamline at FLASH[J]. Infrared Physics & Technology, 51, 423-425(2008).

    [30] Zhao K H, Zhong X H[M]. Optics(1984).

    Tools

    Get Citation

    Copy Citation Text

    Chen Gao, Jun Bao, Yingui Zhou, Yuanjun Yang, Song Sun, Xiaodi Zhu, Heting Li, Shancai Zhang, Lin Wang. Design and Performance of Hefei Infrared Free-Electron Laser Facility[J]. Chinese Journal of Lasers, 2024, 51(8): 0818001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 6, 2023

    Accepted: Sep. 5, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Gao Chen (gaochen@ucas.edu.cn)

    DOI:10.3788/CJL230996

    CSTR:32183.14.CJL230996

    Topics