Journal of Synthetic Crystals, Volume. 50, Issue 10, 1971(2021)
Growth and Microstructure of Ordered Eutectics GdAlO3:Tb3+-Al2O3
[2] [2] MICHAIL C, VALAIS I, FOUNTOS G, et al. Luminescence efficiency of calcium tungstate (CaWO4) under X-ray radiation: comparison with Gd2O2S∶Tb[J]. Measurement, 2018, 120: 213-220.
[3] [3] WOO T, KIM T. Light collection enhancement of the digital X-ray detector using Gd2O2S∶Tb and CsI∶Tl phosphors in the aspect of nano-scale light dispersions[J]. Radiation Physics and Chemistry, 2012, 81(1): 12-15.
[4] [4] NAGARKAR V V, GUPTA T K, MILLER S R, et al. Structured CsI(Tl) scintillators for X-ray imaging applications[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 492-496.
[5] [5] JUNG P G, LEE C H, BAE K M, et al. Microdome-gooved Gd2O2S∶Tb scintillator for flexible and high resolution digital radiography[J]. Optics Express, 2010, 18(14): 14850-14858.
[6] [6] JUNG I D, CHO M K, LEE S M, et al. Flexible Gd2O2S∶Tb scintillators pixelated with polyethylene microstructures for digital X-ray image sensors[J]. Journal of Micromechanics and Microengineering, 2009, 19(1): 015014.
[7] [7] LIU F, OUYANG X P, TANG M H, et al. Scaling-induced enhancement of X-ray luminescence in CsI(Na) crystals[J]. Applied Physics Letters, 2013, 102(18): 181107.
[8] [8] SIMON M, ENGEL K J, MENSER B, et al. X-ray imaging performance of scintillator-filled silicon pore arrays[J]. Medical Physics, 2008, 35(3): 968-981.
[9] [9] OHASHI Y, YASUI N, YOKOTA Y, et al. Submicron-diameter phase-separated scintillator fibers for high-resolution X-ray imaging[J]. Applied Physics Letters, 2013, 102(5): 051907.
[10] [10] YOSHIKAWA A, KAMADA K, KUROSAWA S, et al. Growth and characterization of directionally solidified eutectic systems for scintillator applications[J]. Journal of Crystal Growth, 2018, 498: 170-178.
[12] [12] WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength at 1 873 K[J]. Nature, 1997, 389(6646): 49-52.
[13] [13] OTSUKA A, WAKU Y, TANAKA R. Corrosion of a unidirectionally solidified Al2O3/YAG eutectic composite in a combustion environment[J]. Journal of the European Ceramic Society, 2005, 25(8): 1269-1274.
[14] [14] SAI Q L, XIA C T. Tunable colorimetric performance of Al2O3-YAG∶Ce3+ eutectic crystal by Ce3+ concentration[J]. Journal of Luminescence, 2017, 186: 68-71.
[15] [15] MESA M C, OLIETE P B, ORERA V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method[J]. Journal of the European Ceramic Society, 2011, 31(7): 1241-1250.
[16] [16] TRNOVCOV V, FEDOROV P P, BRTA C, et al. Microstructure and physical properties of superionic eutectic composites of the LiF-RF3 (R=rare earth element) system[J]. Solid State Ionics, 1999, 119(1/2/3/4): 173-180.
[17] [17] YASUI N, OHASHI Y, KOBAYASHI T, et al. Development of phase-separated scintillators with light-guiding properties[J]. Advanced Materials (Deerfield Beach, Fla), 2012, 24(40): 5464-5469.
[21] [21] KAMADA K, YASUI N, OHASHI Y, et al. Optimization of dopants and scintillation fibers’ diameter of GdAlO3/α-Al2O3 eutectic for high-resolution X-ray imaging[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2036-2040.
[22] [22] KAMADA K, YAMAGUCHI H, YASUI N, et al. Development of large size crystal growth technology of oxide eutectic scintillator and a proto-type Talbot-Lau imaging system[J]. Japanese Journal of Applied Physics, 2021, 60(SB): SBBK04.
Get Citation
Copy Citation Text
LIU Fang, LIU Zhen, ZHONG Xingyuan, ZHONG Jiuping. Growth and Microstructure of Ordered Eutectics GdAlO3:Tb3+-Al2O3[J]. Journal of Synthetic Crystals, 2021, 50(10): 1971
Category:
Received: Aug. 13, 2021
Accepted: --
Published Online: Dec. 6, 2021
The Author Email:
CSTR:32186.14.