Journal of Innovative Optical Health Sciences, Volume. 13, Issue 5, 2041004(2020)

Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites

Yang Li1, Yanxian Guo1, Binggang Ye2, Zhengfei Zhuang1, Peilin Lan1, Yue Zhang1, Huiqing Zhong1, Hao Liu1, Zhouyi Guo1、*, and Zhiming Liu1
Author Affiliations
  • 1SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology & Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics, South China Normal University Guangzhou, Guangdong 510631, P. R. China
  • 2Healthy Medical Engineering Technology Research Center Guangdong Food and Drug Vocational College Guangzhou 510520, P. R. China
  • show less
    References(55)

    [1] [1] D. Curtis, A. Hill, A. Wilcock, S. Charlebois, "Foodborne and waterborne pathogenic bacteria in selected Organisation for Economic Cooperation and Development (OECD) countries," J. Food Sci. 79(10), R1871–1876 (2014).

    [2] [2] G. Suzzi, A. Corsetti, "Food microbiology: The past and the new challenges for the next 10 Years," Front. Microbiol. 11, 237 (2020).

    [3] [3] L. Yang, R. Bashir, "Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria," Biotechnol. Adv. 26(2), 135–150 (2008).

    [4] [4] C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren, "Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges," Chem. Rev. 118(10), 4946–4980 (2018).

    [5] [5] A. Campion, P. Kambhampati, "Surface-enhanced Raman scattering," Chem. Soc. Rev. 27(4), 241–250 (1998).

    [6] [6] T. T. Bai, M. Wang, M. Cao, J. Zhang, K. Z. Zhang, P. Zhou, Z. X. Liu, Y. Liu, Z. R. Guo, X. Lu, "Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing," Anal. Bioanal.Chem. 410(9), 2291–2303 (2018).

    [7] [7] W. L. Gao, W. T. Wang, S. H. Yao, S. Wu, H. L. Zhang, J. S. Zhang, F. X. Jing, H. J. Mao, Q. H. Jin, H. Cong, C. P. Jia, G. J. Zhang, J. L. Zhao, "Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays," Anal. Chim. Acta 958, 77–84 (2017).

    [8] [8] Z. Li, L. Leustean, F. Inci, M. Zheng, U. Demirci, S. Wang, "Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care," Biotechnol. Adv. 37(8), 107440 (2019).

    [9] [9] Y. He, X. Wang, B. Ma, J. Xu, "Ramanome technology platform for label-free screening and sorting of microbial cell factories at single-cell resolution," Biotechnol. Adv. 37(6), 107388 (2019).

    [10] [10] J. Guo, Z. Zhong, Y. Li, Y. Liu, R. Wang, H. Ju, "Three-in-One" SERS Adhesive Tape for Rapid Sampling, Release, and Detection of Wound Infectious Pathogens," ACS Appl. Mater. Interfaces 11 (40), 36399–36408 (2019).

    [11] [11] H. K. Huang, H. W. Cheng, C. C. Liao, S. J. Lin, Y. Z. Chen, J. K. Wang, Y. L. Wang, N. T. Huang, "Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering," Lab Chip 20(14), 2520–2528 (2020).

    [12] [12] H. K. Lee, Y. H. Lee, C. S. L. Koh, G. C. Phan- Quang, X. Han, C. L. Lay, H. Y. F. Sim, Y. C. Kao, Q. An, X. Y. Ling, "Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials," Chem. Soc. Rev. 48(3), 731–756 (2019).

    [13] [13] M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, "Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus," Nano Today 25, 135–155 (2019).

    [14] [14] M. Qiu, W. X. Ren, T. Jeong, M. Won, G. Y. Park, D. K. Sang, L. P. Liu, H. Zhang, J. S. Kim, "Omnipotent phosphorene: A next-generation, twodimensional nanoplatform for multidisciplinary biomedical applications," Chem. Soc. Rev. 47(15), 5588–5601 (2018).

    [15] [15] W. Tao, N. Kong, X. Ji, Y. Zhang, A. Sharma, J. Ouyang, B. Qi, J. Wang, N. Xie, C. Kang, H. Zhang, O. C. Farokhzad, J. S. Kim, "Emerging twodimensional monoelemental materials (Xenes) for biomedical applications," Chem. Soc. Rev. 48(11), 2891–2912 (2019).

    [16] [16] G. Reina, J. M. Gonzalez-Dominguez, A. Criado, E. Vazquez, A. Bianco, M. Prato, "Promises, facts and challenges for graphene in biomedical applications," Chem. Soc. Rev. 46(15), 4400–4416 (2017).

    [17] [17] D. An, J. Fu, Z. Xie, C. Xing, B. Zhang, B. Wang, M. Qiu, "Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine," J. Mater. Chem. B (2020).

    [18] [18] W. C. Huang, Z. J. Xie, T. J. Fan, J. G. Li, Y. Z. Wang, L. M. Wu, D. T. Ma, Z. J. Li, Y. Q. Ge, Z. Y. N. Huang, X. Y. Dai, Y. J. Xiang, J. Q. Li, X. Zhu, H. Zhang, "Black-phosphorus-analogue tin monosul fide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions," J. Mater. Chem. C 6(36), 9582–9593 (2018).

    [19] [19] G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong, Y. Li, "A general synthesis approach for amorphous noble metal nanosheets," Nat. Commun. 10 (2019).

    [20] [20] W. Zhou, H. Cui, L. Ying, X. F. Yu, "Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing," Angew. Chem. Int. Ed. Engl. 57(32), 10268–10272 (2018).

    [21] [21] X. Zhu, X. Ji, N. Kong, Y. Chen, M. Mahmoudi, X. Xu, L. Ding, W. Tao, T. Cai, Y. Li, T. Gan, A. Barrett, Z. Bharwani, H. Chen, O. C. Farokhzad, "Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy," ACS Nano 12(3), 2922– 2938 (2018).

    [22] [22] M. Qiu, D. Wang, W. Liang, L. Liu, Y. Zhang, X. Chen, D. K. Sang, C. Xing, Z. Li, B. Dong, F. Xing, D. Fan, S. Bao, H. Zhang, Y. Cao, "Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy," Proc. Natl. Acad. Sci. USA 115(3), 501– 506 (2018).

    [23] [23] W. Tao, X. Ji, X. Zhu, L. Li, J. Wang, Y. Zhang, P. E. Saw, W. Li, N. Kong, M. A. Islam, T. Gan, X. Zeng, H. Zhang, M. Mahmoudi, G. J. Tearney, O. C. Farokhzad, "Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics," Adv. Mater. 30(38), e1802061 (2018).

    [24] [24] Z. Sun, Y. Zhao, Z. Li, H. Cui, Y. Zhou, W. Li, W. Tao, H. Zhang, H. Wang, P. K. Chu, X. F. Yu, "TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer," Small 13(11), 1602896 (2017).

    [25] [25] Y. Li, Z. Liu, Y. Hou, G. Yang, X. Fei, H. Zhao, Y. Guo, C. Su, Z. Wang, H. Zhong, Z. Zhuang, Z. Guo, "Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/ photothermal synergistic cancer therapy," ACS Appl. Mater. Interfaces 9(30), 25098–25106 (2017).

    [26] [26] H. U. Lee, S. Y. Park, S. C. Lee, S. Choi, S. Seo, H. Kim, J. Won, K. Choi, K. S. Kang, H. G. Park, H. S. Kim, H. R. An, K. H. Jeong, Y. C. Lee, J. Lee, "Black phosphorus (BP) nanodots for potential biomedical applications," Small 12(2), 214–219 (2016).

    [27] [27] Q. M. Feng, X. L. Zhao, Y. H. Guo, M. K. Liu, P. Wang, "Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons," Biosens. Bioelectron. 108, 97–102 (2018).

    [28] [28] Q. Zhao, S. Tang, C. Fang, Y. F. Tu, "Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin," Anal. Chim. Acta 936, 83–90 (2016).

    [29] [29] M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, C. M. Niu, "Current progress in black phosphorus materials and their applications in electrochemical energy storage," Nanoscale 9(36), 13384–13403 (2017).

    [30] [30] M. Qiu, D. Q. Zhu, X. C. Bao, J. Y. Wang, X. F. Wang, R. Yang, "WO3 with surface oxygen vacancies as an anode buffer layer for high performance polymer solar cells," J. Mater. Chem. A 4(3), 894–900 (2016).

    [31] [31] M. Qiu, D. Zhu, L. Yang, N. Wan, L. Han, X. Bao, Z. Du, Y. Niu, R. Yang, "Strategy to manipulate molecular orientation and charge mobility in D-A type conjugated polymer through rational fluorination for improvements of photovoltaic performances," J. Phys. Chem. C 120(40), 22757–22765 (2016).

    [32] [32] M. Qiu, R. G. Brandt, Y. Niu, X. Bao, D. Yu, N. Wang, L. Han, L. Yu, S. Xia, R. Yang, "Theoretical study on the rational design of cyanosubstituted P3HT materials for OSCs: Substitution effect on the improvement of photovoltaic performance," J. Phys. Chem. C 119(16), 8501– 8511 (2015).

    [33] [33] M. Qiu, S. Long, B. Li, L. Yan, W. Xie, Y. Niu, X. Wang, Q. Guo, A. Xia, "Toward an understanding of how the optical property of water-soluble cationic polythiophene derivative is altered by the addition of salts: The Hofmeister effect," J. Phys. Chem. C 117(42), 21870–21878 (2013).

    [34] [34] S. Park, R. S. Ruo?, "Chemical methods for the production of graphenes," Nat. Nanotechnol. 4(4), 217–224 (2009).

    [35] [35] W. Wang, H. Bai, H. Y. Li, Q. Lv, Q. Zhang, N. Bao, "Carbon tape coated with gold film as stickers for bulk fabrication of disposable gold electrodes to detect Cr(VI)," Sens. Actuator B-Chem. 236, 218– 225 (2016).

    [36] [36] X. F. Gu, X. Li, S. J. Wu, J. Shi, G. Q. Jiang, G. M. Jiang, S. Tian, "A sensitive hydrazine hydrate sensor based on a mercaptomethyl-terminated trinuclear Ni(II) complex modified gold electrode," RSC Adv. 6(10), 8070–8078 (2016).

    [37] [37] X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. F. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10(2), 553–561 (2010).

    [38] [38] J. Lin, L. Liang, X. Ling, S. Zhang, N. Mao, N. Zhang, B. G. Sumpter, V. Meunier, L. Tong, J. Zhang, "Enhanced Raman scattering on in-plane anisotropic layered materials," J. Am. Chem. Soc. 137(49), 15511–15517 (2015).

    [39] [39] X. Ling, W. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. Lin, J. Zhang, J. Kong, M. S. Dresselhaus, "Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2," Nano Lett. 14(6), 3033– 3040 (2014).

    [40] [40] B. Soundiraraju, B. K. George, "Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate," ACS Nano 11(9), 8892–8900 (2017).

    [41] [41] A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan, H. Minassian, M. Yoshimura, Y. Gogotsi, "Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate," J. Phys. Chem. C 121(36), 19983–19988 (2017).

    [42] [42] P. Karthick Kannan, P. Shankar, C. Blackman, C.-H. Chung, "Recent advances in 2D inorganic nanomaterials for SERS sensing," Adv. Mater. 31(34), 1803432 (2019).

    [43] [43] J. Seo, J. Lee, Y. Kim, D. Koo, G. Lee, H. Park, "Ultrasensitive plasmon-free surface-enhanced Raman spectroscopy with femtomolar detection limit from 2D van der Waals heterostructure," Nano Lett. 20(3), 1620–1630 (2020).

    [44] [44] L. Tao, K. Chen, Z. Chen, C. Cong, C. Qiu, J. Chen, X. Wang, H. Chen, T. Yu, W. Xie, S. Deng, J.-B. Xu, "1T0 transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels," J. Am. Chem. Soc. 140(28), 8696–8704 (2018).

    [45] [45] Z. J. Xie, C. Y. Xing, W. C. Huang, T. J. Fan, Z. J. Li, J. L. Zhao, Y. J. Xiang, Z. N. Guo, J. Q. Li, Z. G. Yang, B. Q. Dong, J. L. Qu, D. Y. Fan, H. Zhang, "Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability," Adv. Funct. Mater. 28(16), 11 (2018).

    [46] [46] Z. Liu, H. Chen, Y. Jia, W. Zhang, H. Zhao,W. Fan, W. Zhang, H. Zhong, Y. Ni, Z. Guo, "A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy," Nanoscale 10(39), 18795– 18804 (2018).

    [47] [47] D. Li, H. Yu, Z. Guo, S. Li, Y. Li, Y. Guo, H. Zhong, H. Xiong, Z. Liu, "SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets," Nanoscale 12(3), 2133–2141 (2020).

    [48] [48] H. Zhao, W. Zhang, Z. Liu, D. Huang, W. Zhang, B. Ye, G. Hu, H. Zhong, Z. Zhuang, Z. Guo, "Insights into the intracellular behaviors of black-phosphorusbased nanocomposites via surface-enhanced Raman spectroscopy," Nanophotonics 7(10), 1651–1662 (2018).

    [49] [49] Y. X. Guo, Z. F. Zhuang, Z. M. Liu, W. D. Fan, H. Q. Zhong, W. Zhang, Y. R. Ni, Z. Y. Guo, "Facile hot spots assembly on molybdenum oxide nanosheets via in situ decoration with gold nanoparticles," Appl. Surf. Sci. 480, 1162–1170 (2019).

    [50] [50] M. K. Singh, P. Chettri, J. Basu, A. Tripathi, B. Mukherjee, A. Tiwari, R. K. Mandal, "Synthesis of anisotropic Au-Cu alloy nanostructures and its application in SERS for detection of methylene blue," Mater. Res. Express 7(1), 12 (2020).

    [51] [51] H. G. Liu, Y. Li, I. I. T. Gilliam, W. W. Shi, N. Chopra, "Surface enhanced Raman scattering (SERS) effect using flexible and selfclosing ZnO nanowire-Au nanoparticle heterostructures," Appl. Surf. Sci. 496, 9 (2019).

    [52] [52] W. Ren, Y. Fang, E. Wang, "A Binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids," ACS Nano 5(8), 6425–6433 (2011).

    [53] [53] D. D. Galvan, Q. Yu, "Surface-enhanced Raman scattering for rapid detection and characterization of antibiotic-resistant bacteria," Adv. Healthcare Mater. 7(13), e1701335 (2018).

    [54] [54] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, "In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates," Nano Lett. 6(10), 2225–2231 (2006).

    [55] [55] K. A. Willets, "Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics," Anal. Bioanal. Chem. 394(1), 85–94 (2009).

    Tools

    Get Citation

    Copy Citation Text

    Yang Li, Yanxian Guo, Binggang Ye, Zhengfei Zhuang, Peilin Lan, Yue Zhang, Huiqing Zhong, Hao Liu, Zhouyi Guo, Zhiming Liu. Rapid label-free SERS detection of foodborne pathogenic bacteria based on hafnium ditelluride-Au nanocomposites[J]. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 30, 2020

    Accepted: Jul. 30, 2020

    Published Online: Oct. 29, 2020

    The Author Email: Zhouyi Guo (ann@scnu.edu.cn)

    DOI:10.1142/s1793545820410047

    Topics