Optoelectronic Technology, Volume. 42, Issue 3, 187(2022)

Study of Tunable Optofluidic Device for Particle Sorting and Storing

Zhongming WANG and Chui Hsiang‑Chen
Author Affiliations
  • School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian Liaoning 116024, CHN
  • show less
    References(32)

    [1] Chen J, Kang Z, Wang G et al. Optofluidic guiding, valving, switching and mixing based on plasmonic heating in a random gold nanoisland substrate[J]. Lab on a Chip, 15, 2504-2512(2015).

    [2] Zhao H, Chin L K, Shi Y et al. Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips[J]. Sensors and Actuators B-Chemical, 331(2021).

    [3] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams[J]. Nature, 330, 769-771(1987).

    [4] Wang G, Ying Z, Ho H-P et al. Nano-optical conveyor belt with waveguide-coupled excitation[J]. Optics Letters, 41, 528-531(2016).

    [5] Soltani M, Lin J, Forties R A et al. Nanophotonic trapping for precise manipulation of biomolecular arrays[J]. Nature Nanotechnology, 9, 448-452(2014).

    [6] Chen Y F, Serey X, Sarkar R et al. Controlled photonic manipulation of proteins and other nanomaterials[J]. Nano Letters, 12, 1633-1637(2012).

    [7] Cai H, Poon A W. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices[J]. Optics Letters, 35, 2855-2857(2010).

    [8] Schmidt B S, Yang A H, Erickson D et al. Optofluidic trapping and transport on solid core waveguides within a microfluidic device[J]. Optics Express, 15, 14322-14334(2007).

    [9] Xu W, Wang Y, Jiao W et al. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective[J]. Optics Letters, 44, 3226-3229(2019).

    [10] Jiao W, Wang G, Ying Z et al. Switching of nanoparticles in large-scale hybrid electro-optofluidics integration[J]. Optics Letters, 41, 2652-2655(2016).

    [11] Xu X, Wang G, Jiao W et al. Multi-level sorting of nanoparticles on multi-step optical waveguide splitter[J]. Optics Express, 26, 29262-29271(2018).

    [12] Zhang S, Shakiba N, Chen Y et al. Patterned optoelectronic tweezers: A new scheme for selecting, moving, and storing dielectric particles and cells[J]. Small, 14, 1803342(2018).

    [13] Choudhari V, Dhoble A, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. International Journal of Heat and Mass Transfer, 163, 120434(2020).

    [14] An R, Wang G, Ji W et al. Controllable trapping and releasing of nanoparticles by a standing wave on optical waveguides[J]. Optics Letters, 43, 3901-3904(2018).

    [15] Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Physical Review Letters, 21, 1450(1968).

    [16] Le Gallo M, Sebastian A. An overview of phase-change memory device physics[J]. Journal of Physics D: Applied Physics, 53, 213002(2020).

    [17] Shportko K, Kremers S, Woda M et al. Resonant bonding in crystalline phase-change materials[J]. Nature Materials, 7, 653-658(2008).

    [18] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 6, 824-832(2007).

    [19] Li P, Yang X, Maß T W et al. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material[J]. Nature Materials, 15, 870-875(2016).

    [20] Yin X, SchäFerling M, Michel A K U et al. Active chiral plasmonics[J]. Nano Letters, 15, 4255-4260(2015).

    [21] Zhang T, Mei S, Wang Q et al. Reconfigurable optical manipulation by phase change material waveguides[J]. Nanoscale, 9, 6895-6900(2017).

    [22] Patel S K, Parmar J, Sorathiya V et al. Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material[J]. Scientific Reports, 11, 1-11(2021).

    [23] Mou N, Liu X, Wei T et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 12, 5374-5379(2020).

    [24] Fu H, Tsang S W. Infrared colloidal lead chalcogenide nanocrystals: Synthesis, properties, and photovoltaic applications[J]. Nanoscale, 4, 2187-2201(2012).

    [25] Li L, Lin H, Qiao S et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 8, 643-649(2014).

    [26] Tao G, Ebendorff-Heidepriem H, Stolyarov A M et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379-458(2015).

    [27] Ghosh M K, Gao Y, Dozono H et al. Proposal of maxwell stress tensor for local force calculation in magnetic body[J]. IEEE Transactions on Magnetics, 54, 1-4(2018).

    [28] Delaney M, Zeimpekis I, Lawson D et al. A new family of ultralow loss reversible phase‐change materials for photonic integrated circuits: Sb2S3 and Sb2Se3[J]. Advanced Functional Materials, 30, 2002447(2020).

    [29] Tran M A, Huang D, Guo J et al. Ring-resonator based widely-tunable narrow-line width si/inp integrated lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-14(2019).

    [30] Shi Y, Zhao H, Kim Truc N et al. Nanophotonic array-induced dynamic behavior for label-free shape-selective bacteria sieving[J]. Acs Nano, 13, 12070-12080(2019).

    [31] Huang W P. Coupled-mode theory for optical waveguides: An overview[J]. JOSA A, 11, 963-983(1994).

    [32] Hellesø O G, Løvhaugen P, Subramanian A Z et al. Surface transport and stable trapping of particles and cells by an optical waveguide loop[J]. Lab on a Chip, 12, 3436-3440(2012).

    Tools

    Get Citation

    Copy Citation Text

    Zhongming WANG, Chui Hsiang‑Chen. Study of Tunable Optofluidic Device for Particle Sorting and Storing[J]. Optoelectronic Technology, 2022, 42(3): 187

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research and Trial-manufacture

    Received: Mar. 14, 2022

    Accepted: --

    Published Online: Dec. 23, 2022

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2022.03.006

    Topics