Journal of Infrared and Millimeter Waves, Volume. 42, Issue 5, 594(2023)
Spectrally selective infrared thermal detectors based on artificially engineered nanostructures
[2] Rogalski A[M]. Infrared Detectors(2011).
[3] Rogalski A. History of Infrared Detectors[J]. Opto-Electronics Review, 20, 279-308(2012).
[4] Yadav P V K, Yadav I, Ajitha B et al. Advancements of Uncooled Infrared Microbolometer Materials: A Review[J]. Sensors and Actuators A: Physical, 342, 113611(2022).
[5] Yu L, Tang L, Yang W et al. Research progress of uncooled infrared detectors[J]. Infrared and Laser Engineering, 50, 20211013(2021).
[6] Stewart J W, Wilson N C, Mikkelsen M H. Nanophotonic Engineering: A New Paradigm for Spectrally Sensitive Thermal Photodetectors[J]. ACS Photonics, 8, 71-84(2021).
[7] Hoevers H F C, Bento A C, Bruijn M P et al. Thermal Fluctuation Noise in a Voltage Biased Superconducting Transition Edge Thermometer[J]. Applied Physics Letters, 77, 4422-4424(2000).
[8] Rogalski A, Antoszewski J, Faraone L. Third-Generation Infrared Photodetector Arrays[J]. Journal of Applied Physics, 105, 091101(2009).
[9] Rogalski A. Infrared Detectors: An Overview[J]. Infrared Physics and Technology, 43, 187-210(2002).
[10] Talghader J J, Gawarikar A S, Shea R P. Spectral Selectivity in Infrared Thermal Detection[J]. Light: Science and Applications, 1, e24(2012).
[11] Landy N I, Sajuyigbe S, Mock J J et al. Perfect Metamaterial Absorber[J]. Physical Review Letters, 100, 207402(2008).
[12] Ding F, Cui Y, Ge X et al. Ultra-Broadband Microwave Metamaterial Absorber[J]. Applied Physics Letters, 100, 103506(2012).
[13] Tao H, Bingham C M, Strikwerda A C et al. Highly Flexible Wide Angle of Incidence Terahertz Metamaterial Absorber: Design, Fabrication, and Characterization[J]. Physical Review B, 78, 241103(2008).
[14] Pan X, Xu H, Yu W et al. Flexible matesurface-based Terahertz super-absorber[J]. Journal of Infrared and Millimeter Waves, 38, 50-54(2019).
[15] Liu N, Mesch M, Weiss T et al. Infrared Perfect Absorber and Its Application as Plasmonic Sensor[J]. Nano Letters, 10, 2342-2348(2010).
[16] Hao J, Wang J, Liu X et al. High Performance Optical Absorber Based on a Plasmonic Metamaterial[J]. Applied Physics Letters, 96, 251104(2010).
[17] Liu X, Starr T, Starr A F et al. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance[J]. Physical Review Letters, 104, 207403(2010).
[18] Lu J, Yu W, Zhang X et al. Large-area high-performance near-infrared absorber based on plasmonic nanostructures[J]. Journal of Infrared and Millimeter Waves, 37, 740-745(2018).
[19] Lu Y, Xu H, Li X et al. Visible-near infrared light superabsorption of aluminum-based planar metamaterial[J]. Journal of Infrared and Millimeter Waves, 40, 314-320(2021).
[20] Yu W, Lu Y, Peng F et al. Localized surface plasmon resonance based tunable dual-band absorber within 1-10 μm[J]. Journal of Infrared and Millimeter Waves, 38, 790-797(2019).
[21] Moreau A, Ciracì C, Mock J J et al. Controlled-Reflectance Surfaces with Film-Coupled Colloidal Nanoantennas[J]. Nature, 492, 86-89(2012).
[22] Ozbay Ekmel. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions[J]. Science, 311, 189-194(2006).
[23] Sun S, He Q, Hao J et al. Electromagnetic Metasurfaces: Physics and Applications[J]. Advances in Optics and Photonics, 11, 380(2019).
[24] Genevet P, Capasso F, Aieta F et al. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces[J]. Optica, 4, 139(2017).
[25] Chen H T, Taylor A J, Yu N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 79, 076401(2016).
[26] Wei J, Ren Z, Lee C. Metamaterial Technologies for Miniaturized Infrared Spectroscopy: Light Sources, Sensors, Filters, Detectors, and Integration[J]. Journal of Applied Physics, 128, 240901(2020).
[27] Watts C M, Liu X, Padilla W J. Metamaterial Electromagnetic Wave Absorbers[J]. Advanced Materials, 24, OP98-OP120(2012).
[28] Tong J C, Suo F, Ma J H Z et al. Surface Plasmon Enhanced Infrared Photodetection[J]. Opto-Electronic Advances, 2, 180026(2019).
[29] Dorodnyy A, Salamin Y, Ma P et al. Plasmonic Photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 4600313(2018).
[30] Zhu Y, Xu H, Yu P et al. Engineering Plasmonic Hot Carrier Dynamics toward Efficient Photodetection[J]. Applied Physics Reviews, 8, 021305(2021).
[31] Brongersma M L, Halas N J, Nordlander P. Plasmon-Induced Hot Carrier Science and Technology[J]. Nature Nanotechnology, 10, 25-34(2015).
[32] Li W, Valentine J G. Harvesting the Loss: Surface Plasmon-Based Hot Electron Photodetection[J]. Nanophotonics, 6, 177-191(2017).
[33] Chen H, Liu H, Zhang Z et al. Nanostructured Photodetectors: From Ultraviolet to Terahertz[J]. Advanced Materials, 28, 403-433(2016).
[34] Yao Y, Shankar R, Rauter P et al. Mid-Infrared Graphene Detectors with Antenna Enhanced Light Absorption and Photo-Carrier Collection[J]. Nano Letters, 14, 3749-3754(2014).
[35] Tong J, Tobing L Y M, Qiu S et al. Room Temperature Plasmon-Enhanced InAs0.91Sb0.09-Based Heterojunction n-i-p Mid-Wave Infrared Photodetector[J]. Applied Physics Letters, 113, 011110(2018).
[36] Zhou Z, Lin H, Pan X et al. Surface plasmon enhanced InAs-based mid-wavelength infrared photodetector[J]. Applied Physics Letters, 122, 091105(2023).
[37] Wu W, Bonakdar A, Mohseni H. Plasmonic Enhanced Quantum Well Infrared Photodetector with High Detectivity[J]. Applied Physics Letters, 96, 161107(2010).
[38] Miyazaki H T, Mano T, Kasaya T et al. Synchronously Wired Infrared Antennas for Resonant Single-Quantum-Well Photodetection up to Room Temperature[J]. Nature Communications, 11, 565(2020).
[39] Nordin L, Petluru P, Kamboj A et al. Ultra-Thin Plasmonic Detectors[J]. Optica, 8, 1545(2021).
[40] Lee S J, Ku Z, Barve A et al. A Monolithically Integrated Plasmonic Infrared Quantum Dot Camera[J]. Nature Communications, 2, 286(2011).
[41] Dang T H, Abadie C, Khalili A et al. Broadband Enhancement of Mid‐Wave Infrared Absorption in a Multi‐Resonant Nanocrystal‐Based Device[J]. Advanced Optical Materials, 10, 2200297(2022).
[42] Chen M, Shao L, Kershaw S V. et al. Photocurrent Enhancement of HgTe Quantum Dot Photodiodes by Plasmonic Gold Nanorod Structures[J]. ACS Nano, 8, 8208-8216(2014).
[43] Knight M W, Sobhani H, Nordlander P et al. Photodetection with Active Optical Antennas[J]. Science, 332, 702-704(2011).
[44] Chalabi H, Schoen D, Brongersma M L. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna[J]. Nano Letters, 14, 1374-1380(2014).
[45] Hoang C V., Hayashi K, Ito Y et al. Interplay of Hot Electrons from Localized and Propagating Plasmons[J]. Nature Communications, 8, 771(2017).
[46] Ma W, Jia D, Wen Y et al. Diode-Based Microbolometer with Performance Enhanced by Broadband Metamaterial Absorber[J]. Optics Letters, 41, 2974(2016).
[47] Khan M W, Sullivan J M, Lee J et al. High Sensitivity Long-Wave Infrared Detector Design Based on Integrated Plasmonic Absorber and VO Nanobeam[J]. IEEE Journal of Quantum Electronics, 57, 4000211(2021).
[48] Smith E M, Nath J, Ginn J et al. Responsivity Improvements for a Vanadium Oxide Microbolometer Using Subwavelength Resonant Absorbers[J]. Infrared Technology and Applications XLII, 9819, 98191Q(2016).
[49] Erturk O, Battal E, Kucuk S E et al. A Plasmonically Enhanced Pixel Structure for Uncooled Microbolometer Detectors[J]. Infrared Technology and Applications XXXIX, 8704, 87041E(2013).
[50] Wu Y, Qu Z, Osman A et al. Mid-Infrared Nanometallic Antenna Assisted Silicon Waveguide Based Bolometers[J]. ACS Photonics, 6, 3253-3260(2019).
[51] Safaei A, Modak S, Lee J et al. Multi-Spectral Frequency Selective Mid-Infrared Microbolometers[J]. Optics Express, 26, 32931-32940(2018).
[52] Yeh T-H, Tsai C-K, Chu S-Y et al. Performance Improvement of Y-Doped VO x Microbolometers with Nanomesh Antireflection Layer[J]. Optics Express, 28, 6433(2020).
[53] Hyun J K, Ahn C W, Kim W C et al. Broadband Enhancement of Infrared Absorption in Microbolometers Using Ag Nanocrystals[J]. Applied Physics Letters, 107, 253102(2015).
[54] Xu Q, Zhou Z, Tan C et al. Spectrally selective visible microbolometer based on planar subwavelength thin films[J]. Nanoscale Advances, 5, 2054(2023).
[55] Lee J, Kwak M, Kim K et al. CMOS-Compatible Mid-Infrared MEMS Thermopile Integrated with an RTD for Flame Sensing in IoT Application[J]. 2019 Symposium on Design, Test, Integration and Packaging of MEMS and MOEMS, DTIP, 2019, 1-5(2019).
[56] Ogawa S, Takagawa Y, Kimata M. Broadband Polarization-Selective Uncooled Infrared Sensors Using Tapered Plasmonic Micrograting Absorbers[J]. Sensors and Actuators, A: Physical, 269, 563-568(2018).
[57] He Y, Wang Y, Li T. Simultaneously Controlling Heat Conduction and Infrared Absorption with a Textured Dielectric Film to Enhance the Performance of Thermopiles[J]. Microsystems and Nanoengineering, 7, 36(2021).
[58] Lu F, Lee J, Jiang A et al. Thermopile Detector of Light Ellipticity[J]. Nature Communications, 7, 12994(2016).
[59] Zolotavin P, Evans C, Natelson D. Photothermoelectric Effects and Large Photovoltages in Plasmonic Au Nanowires with Nanogaps[J]. Journal of Physical Chemistry Letters, 8, 1739-1744(2017).
[60] Dao T D, Ishii S, Yokoyama T et al. Hole Array Perfect Absorbers for Spectrally Selective Midwavelength Infrared Pyroelectric Detectors[J]. ACS Photonics, 3, 1271-1278(2016).
[61] Goldsmith J H, Vangala S, Hendrickson J R et al. Long-Wave Infrared Selective Pyroelectric Detector Using Plasmonic near-Perfect Absorbers and Highly Oriented Aluminum Nitride[J]. Journal of the Optical Society of America B, 34, 1965(2017).
[62] Zhu Y, Wang B, Deng C et al. Photothermal-Pyroelectric-Plasmonic Coupling for High Performance and Tunable Band-Selective Photodetector[J]. Nano Energy, 83, 105801(2021).
[63] Wei L, Monshat H, Qian J et al. Tunable Resonant-Photopyroelectric Detector Using Chalcogenide-Metal-Fluoropolymer Nanograting[J]. Advanced Optical Materials, 9, 2101147(2021).
[64] Gawarikar A S, Shea R P, Talghader J J. High Detectivity Uncooled Thermal Detectors with Resonant Cavity Coupled Absorption in the Long-Wave Infrared[J]. IEEE Transactions on Electron Devices, 60, 2586-2591(2013).
[65] Gawarikar A S, Shea R P, Mehdaoui A et al. Radiation Heat Transfer Dominated Microbolometers[J]. 2008 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, OPT MEMS, 178-179(2008).
[66] Wang Y, Potter B J, Talghader J J. Coupled Absorption Filters for Thermal Detectors[J]. Optics Letters, 31, 1945-1947(2006).
[67] Meinig M, Kurth S, Seifert M et al. Tunable Fabry-Pérot Interferometer with Subwavelength Grating Reflectors for MWIR Microspectrometers[J]. Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, 9759, 97590W(2016).
[68] Jiang S, Li J, Li J et al. Metamaterial Microbolometers for Multi-Spectral Infrared Polarization Imaging[J]. Optics Express, 30, 9065(2022).
[69] Niesler F B P, Gansel J K, Fischbach S et al. Metamaterial Metal-Based Bolometers[J]. Applied Physics Letters, 100, 203508(2012).
[70] Chen C, Huang Y, Wu K et al. Polarization Insensitive, Metamaterial Absorber-Enhanced Long-Wave Infrared Detector[J]. Optics Express, 28, 28843(2020).
[71] Meinzer N, Barnes W L, Hooper I R. Plasmonic Meta-Atoms and Metasurfaces[J]. Nature Photonics, 8, 889-898(2014).
[72] Chen H T, Taylor A J, Yu N. A Review of Metasurfaces: Physics and Applications[J]. Reports on Progress in Physics, 79, 076401(2016).
[73] Ding F, Pors A, Bozhevolnyi S I. Gradient Metasurfaces: A Review of Fundamentals and Applications[J]. Reports on Progress in Physics, 81, 026401(2018).
[74] Yang J, Gurung S, Bej S et al. Active Optical Metasurfaces: Comprehensive Review on Physics, Mechanisms, and Prospective Applications[J]. Reports on Progress in Physics, 85, 036101(2022).
[75] Qin J, Jiang S, Wang Z et al. Metasurface Micro/Nano-Optical Sensors: Principles and Applications[J]. ACS Nano, 16, 11598-11618(2022).
[76] Zheludev N I, Kivshar Y S. From Metamaterials to Metadevices[J]. Nature Materials, 11, 917-924(2012).
[77] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: From Microwaves to Visible[J]. Physics Reports, 634, 1-72(2016).
[78] Maier S A[M]. Plasmonics: Fundamentals and Applications(2007).
[79] Doan A T, Yokoyama T, Dao T D et al. A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector[J]. Micromachines, 10(2019).
[80] Tan X, Zhang H, Li J et al. Non-Dispersive Infrared Multi-Gas Sensing via Nanoantenna Integrated Narrowband Detectors[J]. Nature Communications, 11, 5245(2020).
[81] Maier T, Brückl H. Wavelength-Tunable Microbolometers with Metamaterial Absorbers[J]. Optics Letters, 34, 3012(2009).
[82] Dao T D, Doan A T, Ishii S et al. MEMS-Based Wavelength-Selective Bolometers[J]. Micromachines, 10, 416(2019).
[83] Abdullah A, Koppula A, Alkorjia O et al. Metasurface Integrated Microbolometers[J]. 2019 IEEE Research and Applications of Photonics in Defense Conference, RAPID 2019 - Proceedings, 9-10(2019).
[84] Maier T, Brueckl H. Multispectral Microbolometers for the Midinfrared[J]. Optics Letters, 35, 3766-3768(2010).
[85] Mahjouri-Samani M, Zhou Y S, He X N et al. Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers[J]. Nanotechnology, 24, 035502(2013).
[86] Tsubota T, Uesugi A, Sugano K et al. Wavelength-Dependent near-Infrared Microbolometer for Short-Wavelength Infrared Light with Gold Nanowire Grating Optical Absorber[J]. Microsystem Technologies, 27, 997-1005(2021).
[87] Chen C, Li C, Min S et al. Ultrafast Silicon Nanomembrane Microbolometer for Long-Wavelength Infrared Light Detection[J]. Nano Letters, 21, 8385-8392(2021).
[88] Goldsmid H J[M]. Introduction to Thermoelectricity(2016).
[89] Ogawa S, Okada K, Fukushima N et al. Wavelength Selective Uncooled Infrared Sensor by Plasmonics[J]. Applied Physics Letters, 100, 021111(2012).
[90] Lochbaum A, Dorodnyy A, Koch U et al. Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design[J]. Nano Letters, 20, 4169-4176(2020).
[91] Varpula A, Tappura K, Tiira J et al. Nano-Thermoelectric Infrared Bolometers[J]. APL Photonics, 6, 036111(2021).
[92] Zhang M, Ban D, Xu C et al. Large-Area and Broadband Thermoelectric Infrared Detection in a Carbon Nanotube Black-Body Absorber[J]. ACS Nano, 13, 13285-13292(2019).
[93] Safaei A, Chandra S, Shabbir M W et al. Dirac Plasmon-Assisted Asymmetric Hot Carrier Generation for Room-Temperature Infrared Detection[J]. Nature Communications, 10, 3498(2019).
[94] Abbasi M, Evans C I, Chen L et al. Single Metal Photodetectors Using Plasmonically-Active Asymmetric Gold Nanostructures[J]. ACS Nano, 14, 17535-17542(2020).
[95] Stewart J W, Vella J H, Li W et al. Ultrafast Pyroelectric Photodetection with On-Chip Spectral Filters[J]. Nature Materials, 19, 158-162(2020).
[96] Zhang K, Luo W, Huang S et al. Wavelength-Selective Infrared Detector Fabricated by Integrating LiTaO3 with a Metamaterial Perfect Absorber[J]. Sensors and Actuators, A: Physical, 313, 112186(2020).
[97] Yamamoto K, Goericke F, Guedes A et al. Pyroelectric Aluminum Nitride Micro Electromechanical Systems Infrared Sensor with Wavelength-Selective Infrared Absorber[J]. Applied Physics Letters, 104, 111111(2014).
[98] Suen J Y, Fan K, Montoya J et al. Multifunctional Metamaterial Pyroelectric Infrared Detectors[J]. Optica, 4, 276(2017).
Get Citation
Copy Citation Text
Chong TAN, Yan SUN, Ning DAI, Jia-Ming HAO. Spectrally selective infrared thermal detectors based on artificially engineered nanostructures[J]. Journal of Infrared and Millimeter Waves, 2023, 42(5): 594
Category: Research Articles
Received: Feb. 24, 2023
Accepted: --
Published Online: Aug. 30, 2023
The Author Email: Jia-Ming HAO (jmhao@fudan.edu.cn)