Laser & Optoelectronics Progress, Volume. 61, Issue 4, 0428006(2024)
Aircraft Wake Inversion Based on Bayesian Network in Lidar Detection
[1] Holzäpfel F, Kauertz S, Konopka J et al. Aircraft wake vortex state-of-the-art & research needs[R](2015).
[2] Barbaresco F. Wake vortex detection, prediction and decision support tools: new challenge for airports to increase capacity and safety[J]. Revue REE, 3, 15-25(2013).
[3] Mutuel L H, Barbaresco F, Juge P et al. ATM decision support tool for wake vortex hazard management combining sensors and modeling[C], 2332(2014).
[4] Pan W J, Luo Y M, Han S et al. Research on the response and safety of ARJ21 aircraft encounters wake vortex of different front aircrafts[J]. Flight Dynamics, 40, 13-18, 25(2022).
[5] Cheng J, Hoff A, Tittsworth J et al. The development of wake turbulence re-categorization in the United States (invited)[C], 3434(2016).
[6] Zhou Y Z, Wang C, Liu Y P et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 56, 020001(2019).
[7] Holzäpfel F, Gerz T, Köpp F et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. Journal of Atmospheric and Oceanic Technology, 20, 1183-1195(2003).
[8] Köpp F, Rahm S, Smalikho I. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 21, 194-206(2004).
[9] Köpp F, Rahm S, Smalikho I et al. Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars[J]. Journal of Aircraft, 42, 916-923(2005).
[10] Komatsubara T, Kaku N. Wake vortex detection of departure aircraft(WSANE2006)[R](2006).
[11] Barbaresco F, Jeantet A, Meier U. Wake vortex detection & monitoring by X-band Doppler radar: Paris Orly radar campaign[C], 1-5(2007).
[12] Rahm S, Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar[J]. Journal of Aircraft, 45, 1148-1155(2008).
[13] Smalikho I N, Rahm S. Lidar investigations of the effects of wind and atmospheric turbulence on an aircraft wake vortex[J]. Atmospheric and Oceanic Optics, 23, 137-146(2010).
[14] Smalikho I N, Banakh V A, Holzäpfel F et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 23, A1194-A1207(2015).
[15] Darracq D, Corjon A, Ducros F et al. Simulation of wake vortex detection with airborne Doppler lidar[J]. Journal of Aircraft, 37, 984-993(2000).
[16] Ehlers J, Fezans N. Airborne Doppler LiDAR sensor parameter analysis for wake vortex impact alleviation purposes[M]. Bordeneuve-Guibé J, Drouin A, Roos C. Advances in aerospace guidance, navigation and control, 433-453(2015).
[17] Hallermeyer A, Dolfi-Bouteyre A, Valla M et al. Development and assessment of a Wake Vortex characterization algorithm based on a hybrid LIDAR signal processing[C], 3272(2016).
[18] Smalikho I N, Banakh V A, Falits A V. Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar[J]. Atmospheric and Oceanic Optics, 30, 588-595(2017).
[19] Smalikho I N. Taking into account the ground effect on aircraft wake vortices when estimating their circulation from lidar measurements[J]. Atmospheric and Oceanic Optics, 32, 686-700(2019).
[20] Smalikho I N, Banakh V A, Falits A V et al. Experimental study of aircraft wake vortices on the airfield of tolmachevo airport in 2018[J]. Atmospheric and Oceanic Optics, 33, 124-133(2020).
[21] Wang X Y, Wu S H, Liu X Y et al. Observation of aircraft wake vortex based on coherent Doppler lidar[J]. Acta Optica Sinica, 41, 0901001(2021).
[22] Zhao L Y, Gu R P, Wei Z Q. Calculation of characteristic parameters of dynarnic wake vortex based on lidar echo[J]. Journal of Wuhan University of Science and Technology, 41, 388-394(2018).
[23] Gu R P, Zhao L Y, Wei Z Q. Study on estimation method of characteristic parameters of aircraft wake vortex[J]. Aeronautical Computing Technique, 47, 14-17, 23(2017).
[24] Hon K, Chan P. Aircraft wake vortex observations in Hong Kong[J]. Journal of Radars, 6, 709-718(2017).
[25] Shen C, Li J B, Zhang F L et al. Two-step locating method for aircraft wake vortices based on Gabor filter and velocity range distribution[J]. IET Radar, 14, 1958-1967(2020).
[26] Gao H, Li J B, Chan P W et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 26, 16377-16392(2018).
[27] Li J B, Shen C, Gao H et al. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by lidar[J]. Optics Express, 28, 4286-4306(2020).
[28] Shen C, Gao H, Wang X S et al. Aircraft wake vortex parameter-retrieval system based on lidar[J]. Journal of Radars, 9, 1032-1044(2020).
[29] Gao H, Zhou J, Hu J et al. Variational retrieval algorithm for three-dimensional wind field based on lidar detection[J]. Acta Optica Sinica, 41, 2028002(2021).
[30] Shen C, Li J B, Gao H et al. Aircraft wake vortex behavior prediction based on data assimilation[J]. Journal of Radars, 10, 632-645(2021).
[31] Zhang L W, Guo H P[M]. Introduction to Bayesian networks(2006).
[32] Li S H, Zhang J. Review of Bayesian networks structure learning[J]. Application Research of Computers, 32, 641-646(2015).
[33] Holzäpfel F. Probabilistic two-phase wake vortex decay and transport model[J]. Journal of Aircraft, 40, 323-331(2003).
[34] Holzäpfel F. Probabilistic two-phase aircraft wake-vortex model: further development and assessment[J]. Journal of Aircraft, 43, 700-708(2006).
[35] Burnham D C, Hallock J N. Chicago monostatic acoustic vortex sensing system[R](1982).
[36] Jin X, Song X Q, Liu J X et al. Estimation of turbulence parameters in atmospheric boundary layer based on Doppler lidar[J]. Chinese Journal of Lasers, 48, 1110001(2021).
[37] Chen X M, Zhang H W, Sun K W et al. Inversion methods of slant turbulence parameters based on coherent Doppler lidar[J]. Journal of Atmospheric and Environmental Optics, 18, 1-13(2023).
[38] Wu S H, Zhai X C, Liu B Y. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar[J]. Optics Express, 27, 1142-1163(2019).
[39] Zhang H W, Wu S H, Yin J P et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 37, 468-476(2018).
[40] Zhang H W, Wu S H, Wang Q C et al. Airport low-level wind shear lidar observation at Beijing Capital International Airport[J]. Infrared Physics & Technology, 96, 113-122(2019).
Get Citation
Copy Citation Text
Runping Gu, Tong Lu, Zhiqiang Wei. Aircraft Wake Inversion Based on Bayesian Network in Lidar Detection[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0428006
Category: Remote Sensing and Sensors
Received: Jun. 1, 2023
Accepted: Jun. 19, 2023
Published Online: Feb. 26, 2024
The Author Email: Tong Lu (lutong1779@163.com)
CSTR:32186.14.LOP231435