Remote Sensing Technology and Application, Volume. 39, Issue 2, 381(2024)

Data-driven Data Assimilation Method based on Support Vector Machine Algorithm

Qinghe YU*, Yulong BAI, and Manhong FAN
Author Affiliations
  • College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China
  • show less
    Figures & Tables(11)
    Model-driven versus data-driven data assimilation
    Comparison of the effects of SVR regression reconstruction on Lorenz63 trajectory with true state,Linear regression reconstruction of AnEnKS and model-driven assimilation of EnKS (Lorenz-63 X1 time series)
    RMSEs of the three methods with different M
    Variation of error e(t) in the assimilation process. The horizontal axis represents the time, and the vertical axis represents the error in the assimilation process
    Comparison of phase diagram trajectories between the two methods
    RMSE (SVR-DD-DA and AnEnKF) of two methods with different M and Ca values
    Assimilation results of the two methods with different M and OBS values (SVR-DD-DA and AnEnKF)
    Data assimilation performance of M = 100, N = 50, Ca = 0
    Data assimilation performance of M=10 000, N=50, Ca=0
    • Table 1. Lorenz-63 model dataset (including three dimensions)

      View table
      View in Article

      Table 1. Lorenz-63 model dataset (including three dimensions)

      模拟值(Analogs (t))继承值(Successors (t+ 1))
      x(t)y(t)z(t)x(t + 1)y(t + 1)z(t + 1)
      -6.745 6-11.71014.062 8-7.258 4-12.54814.531 0
      -7.258 4-12.54814.531 0-7.803 4-13.41115.113 5
      -7.803 4-13.41115.113 5-8.379 4-14.287 315.822 0
      13.73220.032 326.237 514.32919.933 128.318 3
      14.32919.933 128.318 314.845 619.534 730.418 9
    • Table 2. EnKF and SVR-DD-DA algorithm description

      View table
      View in Article

      Table 2. EnKF and SVR-DD-DA algorithm description

      算法:EnKF与SVR-DD-DA

      EnKF

      初始化:生成真实状态,观测值

      For t in 1:t do

      For i in 1:N do (预测步骤)

      -计算预测值Xi,t+1f

      -计算观测值yi,t+1

      End

      -计算误差协方差矩阵Pt+1f,计算卡尔曼增益Kt+1

      For i in 1:N do

      -计算分析值Xi,t+1a

      End

      -计算分析值的平均值Xt+1a¯(分析步骤)

      -更新背景场误差协方差Pt+1a

      End

      SVR-DD-DA

      初始化:生成真实状态,样本集

      For t in 1:t do

      For i in 1:N do (预测步骤)

      -模拟数据值(高斯采样过程)

      -计算回归系数参数

      - 计算模拟预测值Xi,t+1f'(回归预测)

      -计算观测值yi,t+1

      End

      -计算模拟误差协方差矩阵Pt+1a',计算卡尔曼

      增益Kt+1a

      For i in 1:N do

      -计算分析值Xi,t+1a'

      End

      -计算分析值的平均值Xt+1a'¯(分析步骤)

      -更新背景场误差协方差Pt+1a'

      End

    Tools

    Get Citation

    Copy Citation Text

    Qinghe YU, Yulong BAI, Manhong FAN. Data-driven Data Assimilation Method based on Support Vector Machine Algorithm[J]. Remote Sensing Technology and Application, 2024, 39(2): 381

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 31, 2022

    Accepted: --

    Published Online: Aug. 13, 2024

    The Author Email: Qinghe YU (981754137@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.2.0381

    Topics