Laser & Optoelectronics Progress, Volume. 61, Issue 7, 0706008(2024)
Development Status and Trend of Board-Level Photoelectric Interconnection Technology
[1] Zhou D J, Cheng L. The domestic and international research situation of photoelectric interconnection technology[J]. Advanced Materials Research, 760/761/762, 383-387(2013).
[2] Liu J F, Zhou W M. Development of PCB base on board-level photoelectric interconnection[J]. Printed Circuit Information, 28, 11-23(2020).
[3] Yang W, Mao J B, Feng X J. Research status and developing tread for waveguide-based board-level optical interconnects technology[J]. Laser & Optoelectronics Progress, 53, 060004(2016).
[4] Miller D A B. Rationale and challenges for optical interconnects to electronic chips[J]. Proceedings of the IEEE, 88, 728-749(2000).
[5] Chen Z H. The Current status and developing trend of electrical interconnection technology[J]. Telecommunication Engineering, 47, 12-18(2007).
[6] Zhou D J, Wu Z H. Summary of photoelectric interconnection technology[J]. Journal of Guilin University of Electronic Technology, 31, 259-265(2011).
[7] Lau J H, Lim Y Y, Lim T G et al. Design and analysis of 3D stacked optoelectronics on optical printed circuit boards[J]. Proceedings of SPIE, 6899, 689907(2008).
[8] Ciftcioglu B, Berman R, Zhang J et al. A 3-D integrated intrachip free-space optical interconnect for many-core chips[J]. IEEE Photonics Technology Letters, 23, 164-166(2011).
[9] Ciftcioglu B, Berman R, Wang S et al. 3-D integrated heterogeneous intra-chip free-space optical interconnect[J]. Optics Express, 20, 4331-4345(2012).
[10] Hendrickx N, Van Steenberge G, Bosman E et al. Towards flexible routing schemes for polymer optical interconnections on printed circuit boards[J]. Proceedings of SPIE, 6899, 689904(2008).
[11] Cheng L. Research on key technologies of PCBA embedded in optical fiber[D](2017).
[12] Cho H S, Kang S, Rho B S et al. Fabrication of fiber-embedded boards using grooving technique for optical interconnection applications[J]. Optical Engineering, 43, 3083-3088(2004).
[13] Schneider M, Kühner T. Optical interconnects on printed circuit boards using embedded optical fibers[J]. Proceedings of SPIE, 6185, 61850L(2006).
[14] Yuan J, Luo F G, Zhou X J et al. Optical interconnection in embedded-fiber printer circuit boards[J]. Optik, 119, 46-50(2008).
[15] Nga N T H, Sangirov J, Joo G C et al. 10 Gbps/ch full-duplex optical link using a single-fiber channel for signal transmission[J]. IEEE Photonics Technology Letters, 26, 609-612(2014).
[16] Mao J B, Xu M T, Yang W et al. Application of temperature-resistant bare fiber in flexible electro-optical printed circuit board[J]. China Sciencepaper, 16, 325-328, 348(2021).
[17] Choi C, Lin L, Liu Y J et al. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects[J]. Journal of Lightwave Technology, 22, 2168-2176(2004).
[18] Chen R T, Lin L, Choi C et al. Fully embedded board-level guided-wave optoelectronic interconnects[J]. Proceedings of the IEEE, 88, 780-793(2000).
[19] Glebov A L, Roman J, Lee M G et al. Optical interconnect modules with fully integrated reflector mirrors[J]. IEEE Photonics Technology Letters, 17, 1540-1542(2005).
[20] Immonen M, Karppinen M, Kivilahti J K. Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects[J]. IEEE Transactions on Electronics Packaging Manufacturing, 28, 304-311(2005).
[21] Karppinen M, Alajoki T, Tanskanen A et al. Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments[C](2006).
[22] Schares L, Kash J A, Doany F E et al. Terabus: terabit/second-class card-level optical interconnect technologies[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 1032-1044(2006).
[23] Dangel R, Bapst U, Berger C et al. Development of a low-cost low-loss polymer waveguide technology for parallel optical interconnect applications[C](2004).
[24] Lin C K, Tandon A, Djordjev K et al. High-speed 985 nm bottom-emitting VCSEL arrays for chip-to-chip parallel optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1332-1339(2007).
[25] Guckenberger D, Schaub J D, Kucharski D et al. 1 V, 10 mW, 10 Gb/s CMOS optical receiver front-end[C], 309-312(2005).
[26] Kucharski D, Kwark Y, Kuchta D et al. A 20 Gb/s VCSEL driver with pre-emphasis and regulated output impedance in 0.13 μm CMOS[C], 222-594(2005).
[27] Patel C S, Tsang C K, Schuster C et al. Silicon carrier with deep through-vias, fine pitch wiring and through cavity for parallel optical transceiver[C], 1318-1324(2005).
[28] Dangel R, Berger C, Beyeler R et al. Polymer-waveguide-based board-level optical interconnect technology for datacom applications[J]. IEEE Transactions on Advanced Packaging, 31, 759-767(2008).
[29] Lamprecht T, Horst F, Dangel R et al. Passive alignment of optical elements in a printed circuit board[C](2006).
[30] Bernabe S, Stevens R, Volpert M et al. Highly integrated VCSEL-based 10 Gb/s miniature optical sub-assembly[C], 1333-1338(2005).
[31] Shiah L L, Teo C, Yee H L et al. Optimization and characterization of flexible polymeric optical waveguide fabrication process for fully embedded board-level optical interconnects[C], 1114-1120(2009).
[32] Houbertz R, Satzinger V, Schmid V et al. Optoelectronic printed circuit board: 3D structures written by two-photon absorption[J]. Proceedings of SPIE, 7053, 70530B(2008).
[33] Shibata T, Takahashi A. Flexible opto-electronic circuit board for in-device interconnection[C], 261-267(2008).
[34] Wang F T, Liu F H, Adibi A. 45 Degree polymer micromirror integration for board-level three-dimensional optical interconnects[J]. Optics express, 17, 10514-10521(2009).
[35] Rho B S, Lee W J, Lim J W et al. High-reliability flexible optical printed circuit board for opto-electric interconnections[J]. Optical Engineering, 48, 015401(2009).
[36] Lee W J, Hwang S H, Lim J W et al. Optical interconnection module integrated on a flexible optical/electrical hybrid printed circuit board[C], 1802-1805(2009).
[37] Hwang S H, Lee W J, Kim M J et al. Ultra-thin and low-power optical interconnect module based on a flexible optical printed circuit board[J]. Optical Engineering, 51, 075402(2012).
[38] Mori T, Takahama K, Fujiwara M et al. Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers[J]. Proceedings of SPIE, 7607, 76070S(2010).
[39] Ito Y, Terada S, Singh M K et al. Demonstration of high-bandwidth data transmission above 240 Gbps for optoelectronic module with low-loss and low-crosstalk polynorbornene waveguides[C], 1526-1531(2012).
[40] Zong L J, Luo F G, Yu Z H. A new optical interconnection module for high coupling efficiency on EOPCB[J]. Proceedings of SPIE, 7279, 72790I(2009).
[41] Yu Z H, Luo F G, Di X et al. Highly reliable optical interconnection network on printed circuit board for distributed computer systems[J]. Optics & Laser Technology, 42, 1332-1336(2010).
[42] Yu Z H, Luo F G, Di X et al. Design and fabrication of waveguide-based chip-to-chip optical interconnection network on printed circuit boards[J]. Frontiers of Optoelectronics in China, 3, 211-215(2010).
[43] Matsuoka Y, Kawamura D, Adachi K et al. 20-Gb/s/ch high-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC[J]. IEEE Photonics Technology Letters, 23, 1352-1354(2011).
[44] Matsuoka Y, Kawamura D, Ban T et al. Optical printed circuit board with an efficient optical interface for 480-Gbps/cm2 (20 Gbps × 12 ch × 2 layers) high-density opticall interconnections[C], JThA58(2010).
[45] Shishikura M, Matsuoka Y, Ban T et al. A high-coupling-efficiency multilayer optical printed wiring board with a cube-core structure for high-density optical interconnections[C], 1275-1280(2007).
[46] Lee Y, Nagatsuma K, Shinoda K et al. High-performance PIN photodiodes with an integrated aspheric microlens[C](2009).
[47] Li L, Zou Y, Lin H T et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects[J]. Journal of Lightwave Technology, 31, 4080-4086(2013).
[48] Hsu S H, Tsou C Y, Wang C M et al. 10 Gb/s optical interconnection on flexible optical waveguide in electronic printed circuit board[J]. Optics and Photonics Journal, 3, 252-255(2013).
[49] Bamiedakis N, Chen J, Penty R V et al. Bandwidth studies on multimode polymer waveguides for ≥25 Gb/s optical interconnects[J]. IEEE Photonics Technology Letters, 26, 2004-2007(2014).
[50] Bamiedakis N, Chen J, Westbergh P et al. 40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects[J]. Journal of Lightwave Technology, 33, 882-888(2014).
[51] Brusberg L, Whalley S, Herbst C et al. Display glass for low-loss and high-density optical interconnects in electro-optical circuit boards with eight optical layers[J]. Optics Express, 23, 32528-32540(2015).
[52] Feng X H, Ji J R, Dou W H. Bending loss of polysiloxane optical waveguides for optical interconnection[J]. Acta Optica Sinica, 32, 0823003(2012).
[53] Feng X H, Ji J R, Dou W H. Fabrication of modified polydimethylsiloxane and multimode optical waveguides[J]. Acta Optica Sinica, 32, 0531003(2012).
[54] Feng X H. Research on unit devices for optical interconnection[D](2012).
[55] Xu X, Ma L, Immonen M et al. Practical evaluation of polymer waveguides for high-speed and meter-scale on-board optical interconnects[J]. Journal of Lightwave Technology, 36, 3486-3493(2018).
[56] Huang Z J, Ma L, Kuang W J et al. Automatic high-density polymer waveguide layout for on-board high-speed optical interconnect[C](2020).
[57] Lu G W, Hong J X, Qiu F et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s-1 for energy-efficient datacentres and harsh-environment applications[J]. Nature Communications, 11, 4224(2020).
[58] Shi Y, Ma L, Laboratory P C et al. High-speed performance evaluation of ultra-flexible polymer waveguides supporting meter-scale optical interconnects[J]. Optics Express, 30, 27236-27248(2022).
[59] Krishna R M, Zhang R, Ravichandran S et al. Polymer waveguide photonic interconnect for multichip communications-based heterogeneous integration[J]. Journal of Nanophotonics, 16, 036002(2022).
Get Citation
Copy Citation Text
Yaohui Du, Xia Hou. Development Status and Trend of Board-Level Photoelectric Interconnection Technology[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706008
Category: Fiber Optics and Optical Communications
Received: Mar. 3, 2023
Accepted: May. 19, 2023
Published Online: Apr. 18, 2024
The Author Email: Xia Hou (hou_xia@siom.ac.cn)
CSTR:32186.14.LOP230766