Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610015(2023)

Design of Shoe Print Feature Extraction Network Integrating Global and Local Features

Yiran Xin1, Yunqi Tang1、*, and Nengbin Cai2
Author Affiliations
  • 1School of Investigation, People's Public Security University of China, Beijing 100038, China
  • 2Shanghai Key Laboratory of Crime Scene Evidence, Shanghai 200083, China
  • show less
    Figures & Tables(14)
    Flow chart of shoe print retrieval algorithm
    Structure of improving MBConv block. (a) Original MBConv block; (b) MBConv block's improvement
    Structure of multi-scale feature weighted fusion branch
    Structure of PCB branch
    Pretreatment of shoe print datasets
    Presentation of train dataset. (a) Random erase; (b) Gaussian noise; (c) random rotate; (d) random resized crop
    CMC curves of different attention mechanisms and layer feature fusion output on CSS-200
    CMC curves of whether to use fast normalized fusion. (a) CSS-200; (b) CS-Database; (c) FID-300
    Visualization of top 10 search results on CSS-200 test set
    • Table 1. Structure of EfficientNet-B3

      View table

      Table 1. Structure of EfficientNet-B3

      StageOperatorResolution(H×WChannelsLayers
      1Conv3×3300×300401
      2MBConv1,k3×3150×150242
      3MBConv6,k3×375×75323
      4MBConv6,k5×538×38483
      5MBConv6,k3×319×19965
      6MBConv6,k5×519×191365
      7MBConv6,k5×510×102326
      8MBConv6,k3×310×103842
      9Conv1×1 & GMP & FC10×1015361
    • Table 2. Composition of different data sets

      View table

      Table 2. Composition of different data sets

      DatasetQueryGalleryNegative
      CS-Database(High-quality)100100
      CS-Database(Blood)53991
      CS-Database(Blood enhancement)53991
      CS-Database(Dust)66991
      FID-300300300875
      CSS-2002002004800
    • Table 3. Comparison of proposed method and other methods on CS-Database dataset

      View table

      Table 3. Comparison of proposed method and other methods on CS-Database dataset

      MethodAccuracy /%
      top1%top2%top3%top4%top5%
      High-qualityPOC9999100100100
      MCNCC99100100100100
      Local Semantic Patch and Manifold Ranking99100100100100
      hybrid features and neighboring images99100100100100
      Local Semantic Filter Bank99100100100100
      SCDA100100100100100
      Proposed method100100100100100
      BloodPOC45.350.954.764.266
      MCNCC92.598.1100100100
      Local Semantic Patch and Manifold Ranking79.294.394.394.396.2
      hybrid features and neighboring images92.5100100100100
      Local Semantic Filter Bank94.3100100100100
      SCDA100100100100100
      Proposed method100100100100100
      DustPOC474751.551.554.5
      MCNCC86.489.490.990.995.5
      Local Semantic Patch and Manifold Ranking83.384.887.990.990.9
      hybrid features and neighboring images89.493.995.595.595.5
      Local Semantic Filter Bank95.4596.9798.4898.4898.48
      SCDA87.8790.990.990.990.9
      Proposed method95.4598.4898.4898.4898.48
    • Table 4. Comparison of proposed method and other methods on CSS-200 dataset

      View table

      Table 4. Comparison of proposed method and other methods on CSS-200 dataset

      MethodAccuracy /%ParamsFLOPs
      top1%top2%top5%top10%
      Conv-2508862.585.592.594116M1.6×1010
      SCDA92.594.59596.5138M1.9×1010
      Resnet10159.580.582.591.549M7.6×109
      ResneXt64879193.553M4.2×109
      Resnet50-FPN7885.59091.560M9.1×109
      SENet79.5858593.5146M2.1×1010
      Proposed method94.596.59810023M2.6×109
    • Table 5. Comparison of proposed method and other methods on FID-300 dataset

      View table

      Table 5. Comparison of proposed method and other methods on FID-300 dataset

      MethodAccuracy /%
      top1%top10%
      Local Semantic Filter Bank7393.7
      Local Semantic Patch and Manifold Ranking61.388
      hybrid features and neighboring images71.887.3
      MCNCC7989
      CABM5879
      Conv-2508847.1676.59
      SCDA50.8479.93
      Proposed method69.890.94
    Tools

    Get Citation

    Copy Citation Text

    Yiran Xin, Yunqi Tang, Nengbin Cai. Design of Shoe Print Feature Extraction Network Integrating Global and Local Features[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Dec. 22, 2021

    Accepted: Jan. 27, 2022

    Published Online: Mar. 16, 2023

    The Author Email: Yunqi Tang (tangyunqi@ppsuc.edu.cn)

    DOI:10.3788/LOP213313

    Topics