Laser & Optoelectronics Progress, Volume. 61, Issue 3, 0330001(2024)
Research Progress of Infrared Spectroscopy Technology Enhanced by Polaritons in Two-Dimensional Materials (Invited)
[1] Liu L F, Ji M, Dong Y Y et al. Quantitative retrieval of organic soil properties from visible near-infrared shortwave infrared (vis-NIR-SWIR) spectroscopy using fractal-based feature extraction[J]. Remote Sensing, 8, 1035(2016).
[2] Yang X X, Sun Z P, Low T et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy[J]. Advanced Materials, 30, 1704896(2018).
[3] Rodrigo D, Tittl A, Ait-Bouziad N et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nature Communications, 9, 2160(2018).
[4] Oh S H, Altug H, Jin X J et al. Nanophotonic biosensors harnessing van der Waals materials[J]. Nature Communications, 12, 3824(2021).
[5] Altug H, Oh S H, Maier S A et al. Advances and applications of nanophotonic biosensors[J]. Nature Nanotechnology, 17, 5-16(2022).
[6] Wilcken R, Nishida J, Triana J F et al. Antenna-coupled infrared nanospectroscopy of intramolecular vibrational interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 120, e2220852120(2023).
[7] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 45, 201-204(1980).
[8] Osawa M, Ikeda M. Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms[J]. The Journal of Physical Chemistry, 95, 9914-9919(1991).
[9] Jensen T R, Van Duyne R P, Johnson S A et al. Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons[J]. Applied Spectroscopy, 54, 371-377(2000).
[10] Enders D, Pucci A. Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films[J]. Applied Physics Letters, 88, 184104(2006).
[11] Ginn J C, Jarecki R L,, Shaner E A et al. Infrared plasmons on heavily-doped silicon[J]. Journal of Applied Physics, 110, 043100(2011).
[12] Fischer M P, Schmidt C, Sakat E et al. Optical activation of germanium plasmonic antennas in the mid-infrared[J]. Physical Review Letters, 117, 047401(2016).
[13] Samarelli A, Frigerio J, Sakat E et al. Fabrication of mid-infrared plasmonic antennas based on heavily doped germanium thin films[J]. Thin Solid Films, 602, 52-55(2016).
[14] Law S, Yu L, Rosenberg A et al. All-semiconductor plasmonic nanoantennas for infrared sensing[J]. Nano Letters, 13, 4569-4574(2013).
[15] Law S, Adams D C, Taylor A M et al. Mid-infrared designer metals[J]. Optics Express, 20, 12155-12165(2012).
[16] Law S, Liu R Y, Wasserman D. Doped semiconductors with band-edge plasma frequencies[J]. Journal of Vacuum Science & Technology B, 32, 052601(2014).
[17] Barho F B, Gonzalez-Posada F, Milla-Rodrigo M J et al. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range[J]. Optics Express, 24, 16175-16190(2016).
[18] Sachet E, Shelton C T, Harris J S et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics[J]. Nature Materials, 14, 414-420(2015).
[19] Matsui H, Ho Y L, Kanki T et al. Mid-infrared plasmonic resonances in 2D VO2 nanosquare arrays[J]. Advanced Optical Materials, 3, 1759-1767(2015).
[20] Falk A L, Chiu K C, Farmer D B et al. Coherent plasmon and phonon-plasmon resonances in carbon nanotubes[J]. Physical Review Letters, 118, 257401(2017).
[21] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).
[22] Wu C C, Guo X D, Duan Y et al. Ultrasensitive mid-infrared biosensing in aqueous solutions with graphene plasmons[J]. Advanced Materials, 34, 2110525(2022).
[23] Xiao F J, Zhao J L. Plasmonic mode control based on vector beams[J]. Acta Optica Sinica, 43, 1623002(2023).
[24] Xu G Y, Ma X F, Sheng C et al. Slow-light lithium niobate electro-optic modulators with spoof surface plasmon polaritons electrodes[J]. Acta Optica Sinica, 43, 1923001(2023).
[25] Ping A, Ni H B, Cheng J X et al. Preparation and optical properties of polarization-dependent nano-gap array[J]. Acta Optica Sinica, 42, 2024002(2022).
[26] Daniel R, Odeta L, Davide J et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 349, 165-168(2015).
[27] Lyu W, Teng H C, Wu C C et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection[J]. Nanoscale, 13, 12720-12726(2021).
[28] Nong J P, Wei W, Wang W et al. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons[J]. Optics Express, 26, 1633-1644(2018).
[29] Hu H, Yang X X, Guo X D et al. Gas identification with graphene plasmons[J]. Nature Communications, 10, 1131(2019).
[30] Neubrech F, Huck C, Weber K et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).
[31] Adato R, Artar A, Erramilli S et al. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems[J]. Nano Letters, 13, 2584-2591(2013).
[32] Bareza N, Wajs E, Paulillo B et al. Quantitative mid-infrared plasmonic biosensing on scalable graphene nanostructures[J]. Advanced Materials Interfaces, 10, 2201699(2023).
[33] Marini A, Silveiro I, García de Abajo F J. Molecular sensing with tunable graphene plasmons[J]. ACS Photonics, 2, 876-882(2015).
[34] Lee I H, Yoo D, Avouris P et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 14, 313-319(2019).
[35] Ma S Q, Deng A L, Lü B S et al. Polaritons in low-dimensional materials and their coupling characteristics[J]. Acta Physica Sinica, 71, 127104(2022).
[36] Caldwell J D, Vurgaftman I, Tischler J G. Probing hyperbolic polaritons[J]. Nature Photonics, 9, 638-640(2015).
[37] Sun Z Y, Basov D N, Fogler M M. Adiabatic amplification of plasmons and demons in 2D systems[J]. Physical Review Letters, 117, 076805(2016).
[38] Liu X Z, Galfsky T, Sun Z et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 9, 30-34(2015).
[39] Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 9, 5263(2018).
[40] Nong J P, Tang L L, Lan G L et al. Wideband tunable perfect absorption of graphene plasmons via attenuated total reflection in Otto prism configuration[J]. Nanophotonics, 9, 645-655(2020).
[41] Wei W, Chen N, Nong J P et al. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy[J]. Optics Express, 26, 16903-16916(2018).
[42] Nakashima H, Sasaki Y, Osozawa R et al. Surface enhanced infrared absorption spectra on pulsed laser deposited silver island films[J]. Thin Solid Films, 536, 166-171(2013).
[43] Enders D, Nagao T, Pucci A et al. Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold[J]. Physical Chemistry Chemical Physics, 13, 4935-4941(2011).
[44] Le F, Brandl D W, Urzhumov Y A et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption[J]. ACS Nano, 2, 707-718(2008).
[45] Srajer J, Schwaighofer A, Ramer G et al. Double-layered nanoparticle stacks for surface enhanced infrared absorption spectroscopy[J]. Nanoscale, 6, 127-131(2014).
[46] Huck C, Neubrech F, Vogt J et al. Surface-enhanced infrared spectroscopy using nanometer-sized gaps[J]. ACS Nano, 8, 4908-4914(2014).
[47] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 6, 7998-8006(2012).
[48] Aouani H, Rahmani M, Šípová H et al. Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies[J]. The Journal of Physical Chemistry C, 117, 18620-18626(2013).
[49] Rodrigo D, Tittl A, John-Herpin A et al. Self-similar multiresonant nanoantenna arrays for sensing from near- to mid-infrared[J]. ACS Photonics, 5, 4903-4911(2018).
[50] Zheng B, Yang X, Li J et al. Graphene plasmon-enhanced IR biosensing for in situ detection of aqueous-phase molecules with an attenuated total reflection mode[J]. Analytical Chemistry, 90, 10786-10794(2018).
[51] Chen S, Autore M, Li J et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy[J]. ACS Photonics, 4, 3089-3097(2017).
[52] Hu H, Zhai F, Hu D B et al. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage[J]. Nanoscale, 7, 19493-19500(2015).
[53] Srivastava T, Jha R. Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance[J]. IEEE Photonics Technology Letters, 30, 319-322(2018).
[54] Low T, Chaves A, Caldwell J D et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 16, 182-194(2017).
[55] Dubrovkin A M, Qiang B, Salim T et al. Resonant nanostructures for highly confined and ultra-sensitive surface phonon-polaritons[J]. Nature Communications, 11, 1863(2020).
[56] Caldwell J D, Glembocki O J, Francescato Y et al. Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators[J]. Nano Letters, 13, 3690-3697(2013).
[57] Li N, Guo X D, Yang X X et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride[J]. Nature Materials, 20, 43-48(2021).
[58] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 70, 2861-2880(1997).
[59] Pucci A, Neubrech F, Weber D et al. Surface enhanced infrared spectroscopy using gold nanoantennas[J]. Physica Status Solidi (b), 247, 2071-2074(2010).
[60] Neubrech F, Kolb T, Lovrincic R et al. Resonances of individual metal nanowires in the infrared[J]. Applied Physics Letters, 89, 253104(2006).
[61] Neubrech F, Pucci A. Plasmonic enhancement of vibrational excitations in the infrared[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 4600809(2013).
[62] Garrido Alzar C L, Martinez M A G, Nussenzveig P. Classical analog of electromagnetically induced transparency[J]. American Journal of Physics, 70, 37-41(2002).
[63] Yan H G, Low T, Guinea F et al. Tunable phonon-induced transparency in bilayer graphene nanoribbons[J]. Nano Letters, 14, 4581-4586(2014).
[64] Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 124, 1866-1878(1961).
[65] Liu F, Cubukcu E. Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons[J]. Physical Review B, 88, 115439(2013).
[66] Ye L F, Sui K H, Zhang Y et al. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications[J]. Nanoscale, 11, 3229-3239(2019).
[67] Liao B X, Guo X D, Hu H et al. Ultra-compact graphene plasmonic filter integrated in a waveguide[J]. Chinese Physics B, 27, 094101(2018).
[68] Zhu J F, Li C W, Ou J Y et al. Perfect light absorption in graphene by two unpatterned dielectric layers and potential applications[J]. Carbon, 142, 430-437(2019).
[69] Li Y L, Yan H G, Farmer D B et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers[J]. Nano Letters, 14, 1573-1577(2014).
[70] Hu H, Yang X X, Zhai F et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 7, 12334(2016).
[71] Nong J P, Wei W, Lan G L et al. Resolved infrared spectroscopy of aqueous molecules employing tunable graphene plasmons in an otto prism[J]. Analytical Chemistry, 92, 15370-15378(2020).
[72] Nong J P, Tang L L, Lan G L et al. Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval[J]. Laser & Photonics Reviews, 15, 2000300(2021).
[73] Nong J P, Tang L L, Lan G L et al. Combined visible plasmons of Ag nanoparticles and infrared plasmons of graphene nanoribbons for high-performance surface-enhanced Raman and infrared spectroscopies[J]. Small, 17, 2004640(2021).
[74] Tang L L, Wei W, Wei X Z et al. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices[J]. Optics Express, 26, 3709-3722(2018).
[75] Tang L L, Nong J P, Wei W et al. Mode energy of graphene plasmons and its role in determining the local field magnitudes[J]. Optics Express, 26, 6214-6221(2018).
[76] Lan G L, Tang L L, Dong J D et al. Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation[J]. Laser & Photonics Reviews, 2300469(2023).
[77] Pisarra M, Sindona A, Riccardi P et al. Acoustic plasmons in extrinsic free-standing graphene[J]. New Journal of Physics, 16, 083003(2014).
[78] Alonso-González P, Nikitin A Y, Gao Y D et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy[J]. Nature Nanotechnology, 12, 31-35(2017).
[79] Wen C C, Chen X Q, Zhang J F et al. Far-field excitation of acoustic graphene plasmons with a metamaterial absorber[J]. Advanced Photonics Research, 2, 2000066(2021).
[80] Epstein I, Alcaraz D, Huang Z Q et al. Far-field excitation of single graphene plasmon cavities with ultracompressed mode volumes[J]. Science, 368, 1219-1223(2020).
[81] Kou L Z, Chen C F, Smith S C. Phosphorene: fabrication, properties, and applications[J]. The Journal of Physical Chemistry Letters, 6, 2794-2805(2015).
[82] Han L, Wang L, Xing H Z et al. Active tuning of midinfrared surface plasmon resonance and its hybridization in black phosphorus sheet array[J]. ACS Photonics, 5, 3828-3837(2018).
[83] Low T, Roldán R, Wang H et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Review Letters, 113, 106802(2014).
[84] Liu Z Z, Aydin K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano Letters, 16, 3457-3462(2016).
[85] Huang X, Cai Y Q, Feng X W et al. Black phosphorus carbide as a tunable anisotropic plasmonic metasurface[J]. ACS Photonics, 5, 3116-3123(2018).
[86] Ni X Y, Wang L, Zhu J X et al. Surface plasmons in a nanostructured black phosphorus flake[J]. Optics Letters, 42, 2659-2662(2017).
[87] Qing Y M, Ma H F, Cui T J. Strong coupling between magnetic plasmons and surface plasmons in a black phosphorus-spacer-metallic grating hybrid system[J]. Optics Letters, 43, 4985-4988(2018).
[88] Wu L M, Wang Q K, Ruan B X et al. High-performance lossy-mode resonance sensor based on few-layer black phosphorus[J]. The Journal of Physical Chemistry C, 122, 7368-7373(2018).
[89] Luo P, Wei W, Lan G L et al. Anisotropic surface plasmon resonance spectroscopy and infrared sensing properties employing graphene-black phosphorus heterostructure (invited)[J]. Acta Photonica Sinica, 50, 1024001(2021).
[90] Cai Y J, Xu K D, Feng N X et al. Anisotropic infrared plasmonic broadband absorber based on graphene-black phosphorus multilayers[J]. Optics Express, 27, 3101-3112(2019).
[91] Li P N, Dolado I, Alfaro-Mozaz F J et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 359, 892-896(2018).
[92] Yuan Z, Chen R K, Li P N et al. Extremely confined acoustic phonon polaritons in monolayer-hBN/metal heterostructures for strong light-matter interactions[J]. ACS Photonics, 7, 2610-2617(2020).
[93] Liu S, He R, Xue L J et al. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride[J]. Chemistry of Materials, 30, 6222-6225(2018).
[94] Giles A J, Dai S Y, Vurgaftman I et al. Ultralow-loss polaritons in isotopically pure boron nitride[J]. Nature Materials, 17, 134-139(2018).
[95] Neubrech F, Huck C, Weber K et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 117, 5110-5145(2017).
[96] Dai S, Fei Z, Ma Q et al. Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride[J]. Science, 343, 1125-1129(2014).
[97] Autore M, Li P N, Dolado I et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit[J]. Light: Science & Applications, 7, 17172(2018).
[98] Autore M, Dolado I, Li P N et al. Enhanced light-matter interaction in 10B monoisotopic boron nitride infrared nanoresonators[J]. Advanced Optical Materials, 9, 2001958(2021).
[99] Bareza N, Paulillo B, Slipchenko T M et al. Phonon-enhanced mid-infrared CO2 gas sensing using boron nitride nanoresonators[J]. ACS Photonics, 9, 34-42(2022).
[100] Zhao Y Q, Chen J C, Xue M F et al. Ultralow-loss phonon polaritons in the isotope-enriched α-MoO3[J]. Nano Letters, 22, 10208-10215(2022).
[101] Yang J, Tang J B, Ghasemian M B et al. High-Q phonon-polaritons in spatially confined freestanding α-MoO3[J]. ACS Photonics, 9, 905-913(2022).
[102] Ma W L, Alonso-González P, Li S J et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 562, 557-562(2018).
[103] Sui C, Liu Y, Zhou S. Grating-type controllable absorption metasurfaces based on α-MoO3[J]. Applied Physics, 373-379(2021).
[104] Pian C, Sang T, Li S et al. Selective excitation of hyperbolic phonon polaritons-induced broadband absorption via α-MoO3 square pyramid arrays[J]. Discover Nano, 18, 41(2023).
[105] Schwartz J J, Le S T, Krylyuk S et al. Substrate-mediated hyperbolic phonon polaritons in MoO3[J]. Nanophotonics, 10, 1517-1527(2021).
[106] Yadav A, Varshney S K, Lahiri B. Hybridized phonon polaritons assisted broad range SEIRA-based multimolecular sensing[J]. IEEE Sensors Journal, 23, 21812-21820(2023).
[107] Nong J P, Feng F, Gan J et al. Active modulation of graphene near-infrared electroabsorption employing borophene plasmons in a wide waveband[J]. Advanced Optical Materials, 10, 2102131(2022).
[108] Luo P, Wei W, Lan G L et al. Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure[J]. Optics Express, 29, 29690-29703(2021).
[109] Yang X X, Zhai F, Hu H et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der waals heterostructures[J]. Advanced Materials, 28, 2931-2938(2016).
[110] Stauber T, Gómez-Santos G, Brey L. Spin-charge separation of plasmonic excitations in thin topological insulators[J]. Physical Review B, 88, 205427(2013).
[111] Stauber T, Gómez-Santos G, Brey L. Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling[J]. ACS Photonics, 4, 2978-2988(2017).
[112] Stauber T. Plasmonics in Dirac systems: from graphene to topological insulators[J]. Journal of Physics: Condensed Matter, 26, 123201(2014).
[113] Hofmann J, Das Sarma S. Surface plasmon polaritons in topological weyl semimetals[J]. Physical Review B, 93, 241402(2016).
[114] Politano A, Chiarello G, Ghosh B et al. 3D Dirac plasmons in the type-II Dirac semimetal PtTe2[J]. Physical Review Letters, 121, 086804(2018).
[115] Chiarello G, Hofmann J, Li Z L et al. Tunable surface plasmons in weyl semimetals TaAs and NbAs[J]. Physical Review B, 99, 121401(2019).
[116] Wang C, Sun Y Y, Huang S Y et al. Tunable plasmons in large-area WTe2 thin films[J]. Physical Review Applied, 15, 014010(2021).
[117] Tan C, Yue Z J, Dai Z G et al. Nanograting-assisted generation of surface plasmon polaritons in Weyl semimetal WTe2[J]. Optical Materials, 86, 421-423(2018).
[118] Nascimento V B, de Carvalho V E, Paniago R et al. XPS and EELS study of the bismuth selenide[J]. Journal of Electron Spectroscopy and Related Phenomena, 104, 99-107(1999).
[119] Di Pietro P, Ortolani M, Limaj O et al. Observation of Dirac plasmons in a topological insulator[J]. Nature Nanotechnology, 8, 556-560(2013).
[120] Autore M, D’Apuzzo F, Di Gaspare A et al. Plasmon–phonon interactions in topological insulator microrings[J]. Advanced Optical Materials, 3, 1257-1263(2015).
[121] Wu H H, Liu X C, Cai Y P et al. Near-field radiative heat transfer modulated by nontrivial topological surface states[J]. Materials Today Physics, 27, 100825(2022).
[122] Liu J X, Park S, Nowak D et al. Near-field characterization of graphene plasmons by photo-induced force microscopy[J]. Laser & Photonics Reviews, 12, 1800040(2018).
[123] Yang Z B, Tang D Y, Hu J et al. Near-field nanoscopic terahertz imaging of single proteins[J]. Small, 17, 2005814(2021).
[124] Li P, Dolado I, Alfaro-Mozaz F J et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials[J]. Nano Letters, 17, 228-235(2017).
[125] Elbanna A, Jiang H, Fu Q D et al. 2D material infrared photonics and plasmonics[J]. ACS Nano, 17, 4134-4179(2023).
[126] Hu D B, Dai Q. Near-field optical characterization of low-dimensional nanomaterials[J]. Chinese Science Bulletin, 63, 3747-3759(2018).
[127] Li P N, Wang T, Böckmann H et al. Graphene-enhanced infrared near-field microscopy[J]. Nano Letters, 14, 4400-4405(2014).
[128] Bylinkin A, Schnell M, Autore M et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules[J]. Nature Photonics, 15, 197-202(2021).
Get Citation
Copy Citation Text
Wei Wei, Guilian Lan, Peng Luo, Linlong Tang. Research Progress of Infrared Spectroscopy Technology Enhanced by Polaritons in Two-Dimensional Materials (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(3): 0330001
Category: Spectroscopy
Received: Oct. 7, 2023
Accepted: Nov. 29, 2023
Published Online: Feb. 22, 2024
The Author Email: Wei Wei (wwei@cqu.edu.cn)
CSTR:32186.14.LOP232219