Chinese Journal of Liquid Crystals and Displays, Volume. 39, Issue 7, 980(2024)
Semantic segmentation method for street images with multi-dimensional features
[1] LIU B C, CAI H Y, YANG S Y et al. Lightweight semantic segmentation network for autonomous driving scenarios[J]. Journal of Xidian University, 50, 118-128(2023).
[3] LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C](2001).
[5] CHEN L C, PAPANDREOU G, KOKKINOS I et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J/OL](2014).
[9] VASWANI A, SHAZEER N, PARMAR N et al. Attention is all you need[C](2017).
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C](2015).
[25] XIE E Z, WANG W H, YU Z D et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C], 12077-12090(2021).
Get Citation
Copy Citation Text
Lei ZHU, Chenjie CHE, Tongyu YAO, Yang PAN, Bo ZHANG. Semantic segmentation method for street images with multi-dimensional features[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(7): 980
Category: Research Articles
Received: Jun. 7, 2023
Accepted: --
Published Online: Jul. 23, 2024
The Author Email: Chenjie CHE (che147890@163.com)