Journal of Quantum Optics, Volume. 27, Issue 3, 235(2021)

High-order Quantum Correlation in an Asymmetric Semiconductor Quantum Well

ZHANG Zhen-xing1、*, GUO Hong-ju2, and WANG Fei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(37)

    [1] [1] MollowB R. Power Spectrum of Light Scattered by Two-Level Systems[J]. Physical Review, 1969, 188(5): 1969-1975. DOI: 10.1103/PhysRev.188.1969.

    [2] [2] Wu F Y, Grove R E, Ezekiel S. Investigation of the Spectrum of Resonance Fluorescence Induced by a Monochromatic Field[J]. Physical Review Letters, 1975, 35(21): 1426--1429. DOI: 10.1103/PhysRevLett.35.1426.

    [3] [3] Hartig W, Rasmussen W, Schieder R, et al. Study of the frequency distribution of the fluorescent light induced by monochromatic radiation[J]. Zeitschrift Fur Physik A Hadrons & Nuclei, 1976, 278(3): 205-210. DOI: 10.1007/BF01409169.

    [4] [4] Carmichael H J, Walls D F. A quantum-mechanical master equation treatment of the dynamical Stark effect[J]. Journal of Physics B Atomic & Molecular Physics, 1976, 9(8): 1199-1219. DOI: 10.1088/0022-3700/9/8/007.

    [5] [5] Kimble H J, Dagenais M, Mandel L. Photon Antibunching in Resonance Fluorescence[J]. Physical Review Letters, 1977, 39(11): 691-695. DOI: 10.1103/PhysRevLett.39.691.

    [6] [6] Mandel L. Sub-Poissonian photon statistics in resonance fluorescence[J]. Optics Letters, 1979, 4(7): 205-207. DOI: 10.1364/OL.4.000205.

    [7] [7] Short R, Mandel L. Observation of Sub-Poissonian Photon Statistics[J]. Physical Review Letters, 2008, 51(5): 384-387. DOI: 10.1103/PhysRevLett.51.384.

    [9] [9] Walls D F, Zoller P. Reduced Quantum Fluctuations in Resonance Fluorescence[J]. Physical Review Letters, 1981, 47(10): 709-711. DOI: 10.1103/PhysRevLett.47.709.

    [10] [10] Vogel W, Welsch D G. Squeezing Pattern in Resonance Fluorescence from a Regular N-Atom System[J]. Physical Review Letters, 1985, 54(16): 1802-1805. DOI: 10.1103/PhysRevLett.54.1802.

    [11] [11] Ferretti S, Savona V, Gerace D. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators[J]. New Journal of Physics, 2013, 15: 025012. DOI: 10.1088/1367-2630/15/2/025012.

    [13] [13] Lawande S V, Lawande Q V,Jagatap B N. Role of the dipole-dipole interaction in the interpretation of quantum jumps in two three-level atoms[J]. Physical Review A, 1989, 40(6): 3434-3437. DOI: 10.1103/PhysRevA.40.3434.

    [14] [14] Schubert M, Siemers I, Blatt R, et al. Photon antibunching and non-Poissonian fluorescence of a single three-level ion[J]. Physical Review Letters, 1992, 68(20): 3016-3019. DOI: 10.1103/PhysRevLett.68.3016.

    [15] [15] Denisov A, Castro-Beltran H, Carmichael H. Time-Asymmetric Fluctuations of Light and the Breakdown of Detailed Balance[J]. Physical Review Letters, 2002, 88(24): 243601. DOI: 10.1103/PhysRevLett.88.243601.

    [16] [16] Gerber S, Rotter D, Slodicka L, et al. Intensity-field correlation of single-atom resonance fluorescence[J]. Physical Review Letters, 2009, 102(18): 183601. DOI: 10.1103/PhysRevLett.102.183601.

    [17] [17] Xu Q, Greplova E, Julsgaard B, et al. Correlation functions and conditioned quantum dynamics in photodetection theory[J]. Physica Scripta, 2015, 90(12): 128004. DOI: 10.1088/0031-8949/90/12/128004.

    [18] [18] Xu Q, Mlmer K. Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states[J]. Physical Review A, 2015, 92(3): 033830. DOI: 10.1103/PhysRevA.92.033830.

    [19] [19] Wang F, Feng X, Oh C H. Intensity-intensity and intensity-amplitude correlation of microwave photons from a superconducting artificial atom[J]. Laser Physics Letters, 2016, 13(10): 105201. DOI: 10.1088/1612-2011/13/10/105201.

    [20] [20] Zhao T, Peng Z-A, Yang G-Q, et al. Time-asymmetric quantum fluctuations in intensity-amplitude correlation for a driven cavity QED system[J]. Optics Express, 2020, 28(1): 379-393. DOI: 10.1364/OE.377815.

    [21] [21] Dynes J F, Frogley M D, Beck M, et al. ac Stark Splitting and Quantum Interference with Intersubband Transitions in Quantum Wells[J]. Physical Review Letters, 2005, 94(15): 157403. DOI: 10.1103/PhysRevLett.94.157403.

    [22] [22] Serapiglia G B, Paspalakis E, Sirtori C, et al. Laser-Induced Quantum Coherence in a Semiconductor Quantum Well[J]. Physical Review Letters, 2000, 84(5): 1019-1022. DOI: 10.1103/PhysRevLett.84.1019.

    [23] [23] Dynes J F,Frogley M D, Rodger J, et al. Optically mediated coherent population trapping in asymmetric semiconductor quantum wells[J]. Physical Review B, 2005, 72(8): 085323. DOI: 10.1103/PhysRevB.72.085323.

    [24] [24] Cui N, Niu Y, Gong S. Tunneling-induced coherent electron population transfer in an asymmetric quantum well[J]. Optics Communications, 2011, 284(12): 3134-3139. DOI: 10.1016/j.optcom.2011.02.064.

    [25] [25] Wang Z, Yu B. Optical bistability via dual electromagnetically induced transparency in a coupled quantum-well nanostructure[J]. Journal of Applied Physics, 2013, 113(11): 113101. DOI: 10.1063/1.4795282.

    [26] [26] Schmidt H, Ram R J. All-optical wavelength converter and switch based on electromagnetically induced transparency[J]. Applied Physics Letters, 2000, 76(22): 3173-3175. DOI: 10.1063/1.126620.

    [27] [27] Joshi A, Xiao M. Optical bistability in a three-level semiconductor quantum-well system[J]. Applied Physics B, 2004, 79(1): 65-69. DOI: 10.1007/s00340-004-1521-7.

    [28] [28] Wu J H, Gao J Y, Xu J H, et al. Ultrafast All Optical Switching via Tunable Fano Interference[J]. Physical Review Letters, 2005, 95(5): 057401. DOI: 10.1103/PhysRevLett.95.057401.

    [29] [29] Han D A,Zeng Y G, Bai Y F. Slow light propagation without absorption based on intersubband transitions in a semiconductor quantum well[J]. Optoelectronics Letters, 2012, 8(5): 397-400. DOI: 10.1007/s11801-012-2276-8.

    [30] [30] Yelin S F, Hemmer P R. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection[J]. Physical Review A, 2002, 66(1): 13803. DOI: 10.1103/PhysRevA.66.013803.

    [31] [31] Shammah N,Liberato S D.Theory of intersubband resonance fluorescence[J]. Physical Review B, 2015, 92(20): 201402. DOI: 10.1103/PhysRevB.92.201402.

    [32] [32] Dynes J F, Paspalakis E. Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well[J]. Physical Review B, 2006, 73(23): 233305. DOI: 10.1103/PhysRevB.73.233305.

    [33] [33] Sun H, Gong S Q, Niu Y P, et al. Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference[J]. Physical Review B, 2007, 74(15): 155314. DOI: 10.1103/PhysRevB.74.155314.

    [34] [34] Shah J. Hot Carriers in Semiconductor Nanostructures[M]. New York: Academic Press, 1992.

    [35] [35] Kuznetsov A V. Interaction of ultrashort light pulses with semiconductors: Effective Bloch equations with relaxation and memory effects[J]. Physical Review B, 1991, 44(16): 8721-8744. DOI: 10.1103/PhysRevB.44.8721.

    [36] [36] LoudonR. The Quantum Theory of Light[M]. Oxford: Oxford University Press, 1983.

    [37] [37] Rmichael H J. Statistical Methods in Quantum Optics 1[M]. Berlin: Springer Press, 1999.

    [38] [38] Foster G T, Orozco L A, Castro-Beltran H M, et al. Quantum State Reduction and Conditional Time Evolution of Wave-Particle Correlations in Cavity QED[J]. Physical Review Letters, 2000, 85(15): 3149-3152. DOI: 10.1103/PhysRevLett.85.3149.

    [39] [39] Denisov A, Castro-Beltran H M, Carmichael H J. Time-Asymmetric Fluctuations of Light and the Breakdown of Detailed Balance[J]. Physical Review Letters, 2002, 88(24): 243601(1-4). DOI: 10.1103/PhysRevLett.88.243601.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Zhen-xing, GUO Hong-ju, WANG Fei. High-order Quantum Correlation in an Asymmetric Semiconductor Quantum Well[J]. Journal of Quantum Optics, 2021, 27(3): 235

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 7, 2021

    Accepted: --

    Published Online: Nov. 18, 2021

    The Author Email: ZHANG Zhen-xing (wy_zzx012@163.com)

    DOI:10.3788/jqo20212703.0802

    Topics