Infrared and Laser Engineering, Volume. 50, Issue 11, 20200522(2021)
Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier
[1] Dorman C, Schulze M. Picosecond micromachining update: Unique fiber-based laser technology delivers high pulse energy and average power[J]. Laser Technik Journal, 5, 44-47(2010).
[2] Muhammad N, Whitehead D, Boor A, et al. Picosecond laser micromaching of nitinol and ptatimum alloy for coronary stent applications[J]. Applied Physics A-Materials Science & Processing, 106, 607-617(2012).
[3] [3] Neuenschwer B, Bucher G F, Nussbaum C, et al. Processing of metals dielectric materials with pslaser pulses: results, strategies, limitations needs[C]Proc of SPIE, 2010, 7584: 75840R.
[4] Lu Shang, Lv Siqi, Chen Meng, et al. Realization of single-pulse energy 3 mJ, repetition frequency 1 kHz picosecond super-Gaussian beam[J]. Infrared and Laser Engineering, 48, 1005012(2019).
[5] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).
[6] Gamaly E G, Madsen N R, Duering M, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface[J]. Physical Review B, 71, 174405(2005).
[7] Peng H, Yang C, Lu S, et al. All-solid-state picosecond radially polarized laser and its processing characteristics[J]. Infrared and Laser Engineering, 48, 0106003(2019).
[8] Bai Z N, Bai Z X, Sun X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 13, 2841(2020).
[9] Wang Z, Fu W, Zhang R. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron[J]. Infrared and Laser Engineering, 48, 0706002(2019).
[10] Lin Y Y, Lee P, Xu J L, et al. High-pulse-energy topological insulator Bi2Te3-based passive q-switched solid-state Laser[J]. IEEE Photonics Journal, 8, 1-10(2016).
[11] Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si[J]. Electronics Letters, 54, 432-433(2018).
[12] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited)[J]. Infrared and Laser Engineering, 49, 20201069(2020).
[13] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 75, 626-645(2018).
[14] Bai Z, Bai Z, Yang C, et al. High pulse energy, high repetition picosecond chirped-multi-pulse regenerative amplifier laser[J]. Optics & Laser Technology, 46, 25-28(2013).
[15] Keller U, 'tHooft G W, Knox W H, et al. Femtosecond pulses from a continuously self-starting passively mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 1022-1024(1991).
[16] Li Z, Dong N, Zhang Y, et al. Invited Article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. ACS Photonics, 3, 080802(2018).
[17] Kleinbauer J, Knappe R, Wallenstein R. 13 W picosecond Nd: GdVO4 regenerative amplifier with 200 kHz repetition rate[J]. Applied Physics B, Lasers and Optics, B81, 163-166(2005).
[18] Agnesi A, Carra L, Dallocchio P, et al. 210 μJ picosecond pulses from a quasi-CW Nd: YVO4 grazing-incidence two-stage slab amplifier package[J]. IEEE Journal of Quantum Electronics, 44, 952-957(2008).
[19] Liu H, Gao C, Tao J, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode[J]. Optics Express, 16, 7888-7893(2008).
[20] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[21] Liu B W, Hu M L, Fang X H, et al. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing[J]. Laser Physics Letters, 6, 44-48(2010).
[22] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 437, 6-10(2019).
[23] Röser F, Schimpf D, Schmidt O, et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 2230-2232(2007).
Get Citation
Copy Citation Text
Hui Chen, Zhenxu Bai, Jiancai Wang, Bingyuan Zhang, Zhen'ao Bai. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522
Category: Lasers & Laser optics
Received: Dec. 28, 2020
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: Zhen'ao Bai (baizhenao@hotmail.com)