Infrared and Laser Engineering, Volume. 50, Issue 11, 20200522(2021)

Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier

Hui Chen1,2, Zhenxu Bai1,2, Jiancai Wang3, Bingyuan Zhang3, and Zhen'ao Bai4,5、*
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Shandong Key Laboratory of Optical Communication Science and Technology, School of Physicsc Science and Information Technology, Liaocheng University, Liaocheng 252059, China
  • 4Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 5Beijing GK Laser Technology Co., Ltd., Beijing 102211, China
  • show less
    References(23)

    [1] Dorman C, Schulze M. Picosecond micromachining update: Unique fiber-based laser technology delivers high pulse energy and average power[J]. Laser Technik Journal, 5, 44-47(2010).

    [2] Muhammad N, Whitehead D, Boor A, et al. Picosecond laser micromaching of nitinol and ptatimum alloy for coronary stent applications[J]. Applied Physics A-Materials Science & Processing, 106, 607-617(2012).

    [3] [3] Neuenschwer B, Bucher G F, Nussbaum C, et al. Processing of metals dielectric materials with pslaser pulses: results, strategies, limitations needs[C]Proc of SPIE, 2010, 7584: 75840R.

    [4] Lu Shang, Lv Siqi, Chen Meng, et al. Realization of single-pulse energy 3 mJ, repetition frequency 1 kHz picosecond super-Gaussian beam[J]. Infrared and Laser Engineering, 48, 1005012(2019).

    [5] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008).

    [6] Gamaly E G, Madsen N R, Duering M, et al. Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface[J]. Physical Review B, 71, 174405(2005).

    [7] Peng H, Yang C, Lu S, et al. All-solid-state picosecond radially polarized laser and its processing characteristics[J]. Infrared and Laser Engineering, 48, 0106003(2019).

    [8] Bai Z N, Bai Z X, Sun X L, et al. A 33.2 W high beam quality chirped-pulse amplification-based femtosecond laser for industrial processing[J]. Materials, 13, 2841(2020).

    [9] Wang Z, Fu W, Zhang R. Numerical simulation of femtosecond laser multi-pulse ablation of metal iron[J]. Infrared and Laser Engineering, 48, 0706002(2019).

    [10] Lin Y Y, Lee P, Xu J L, et al. High-pulse-energy topological insulator Bi2Te3-based passive q-switched solid-state Laser[J]. IEEE Photonics Journal, 8, 1-10(2016).

    [11] Liu S, Jung D, Norman J C, et al. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si[J]. Electronics Letters, 54, 432-433(2018).

    [12] Zheng Li, Wang Huibo, Tian Wenlong, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited)[J]. Infrared and Laser Engineering, 49, 20201069(2020).

    [13] Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 75, 626-645(2018).

    [14] Bai Z, Bai Z, Yang C, et al. High pulse energy, high repetition picosecond chirped-multi-pulse regenerative amplifier laser[J]. Optics & Laser Technology, 46, 25-28(2013).

    [15] Keller U, 'tHooft G W, Knox W H, et al. Femtosecond pulses from a continuously self-starting passively mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 1022-1024(1991).

    [16] Li Z, Dong N, Zhang Y, et al. Invited Article: Mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. ACS Photonics, 3, 080802(2018).

    [17] Kleinbauer J, Knappe R, Wallenstein R. 13 W picosecond Nd: GdVO4 regenerative amplifier with 200 kHz repetition rate[J]. Applied Physics B, Lasers and Optics, B81, 163-166(2005).

    [18] Agnesi A, Carra L, Dallocchio P, et al. 210 μJ picosecond pulses from a quasi-CW Nd: YVO4 grazing-incidence two-stage slab amplifier package[J]. IEEE Journal of Quantum Electronics, 44, 952-957(2008).

    [19] Liu H, Gao C, Tao J, et al. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode[J]. Optics Express, 16, 7888-7893(2008).

    [20] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [21] Liu B W, Hu M L, Fang X H, et al. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing[J]. Laser Physics Letters, 6, 44-48(2010).

    [22] Manchee C P K, Möller J, Miller R J D. Highly stable, 100 W average power from fiber-based ultrafast laser system at 1030 nm based on single-pass photonic-crystal rod amplifier[J]. Optics Communications, 437, 6-10(2019).

    [23] Röser F, Schimpf D, Schmidt O, et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 2230-2232(2007).

    CLP Journals

    [1] Feng Gao, Yunpeng Cai, Zhenxu Bai, Yaoyao Qi, Bingzheng Yan, Yulei Wang, Zhiwei Lv, Jie Ding. SHG efficiency of nonlinear crystal walk-off effect[J]. Infrared and Laser Engineering, 2023, 52(8): 20230254

    [2] Bo Zhang, Dongxia Hu, Zhitao Peng, Rui Zhang, Dandan Zhou, Zhao Dang, Junpu Zhao. Laser time fiducial system for high-power laser facility based on optic-electric and electric-optic conversion[J]. Infrared and Laser Engineering, 2023, 52(11): 20230234

    [3] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    Tools

    Get Citation

    Copy Citation Text

    Hui Chen, Zhenxu Bai, Jiancai Wang, Bingyuan Zhang, Zhen'ao Bai. Hundred-watt green picosecond laser based on LBO frequency-doubled photonic crystal fiber amplifier[J]. Infrared and Laser Engineering, 2021, 50(11): 20200522

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 28, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email: Zhen'ao Bai (baizhenao@hotmail.com)

    DOI:10.3788/IRLA20200522

    Topics