Acta Photonica Sinica, Volume. 50, Issue 7, 212(2021)
Investigation of Turbulence Parameters Based on Liquid-phase Cloud Microphysics Fluctuation Measured by Digital Holography
[1] SHI Yining, ZHANG Zhang, CHAN Kalok et al. Multi-layer solar radiative transfer considering the vertical variation of inherent microphysical properties of clouds[J]. Optics Express, 27(2019).
[2] ZHANG Yupeng, ZHAO Chuanfeng, ZHANG Kai et al. Retrieving the microphysical properties of opaque liquid water clouds from CALIOP measurements[J]. Optics Express, 27, 34126-34140(2019).
[3] LI Jiming, LV Qiaoyi, ZHANG Min et al. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds[J]. Atmospheric Chemistry and Physics, 17, 1847(2017).
[4] GAO Sinan, LU Chunsong, LIU Yangang et al. Contrasting scale dependence of entrainment-mixing mechanisms in stratocumulus clouds[J]. Geophysical Research Letters, 47(2020).
[5] LU Chunsong, LIU Yangang, SEONG S Y et al. Reconciling contrasting relationships between relative dispersion and volume-mean radius of cloud Droplet size distributions[J]. Journal of Geophysical Research Atmospheres, 125(2020).
[6] FALKOVICH G, FOUXON A, STEPANOV M G. Acceleration of rain initiation by cloud turbulence[J]. Nature, 419, 151-154(2002).
[7] SARDINA G, PICANO F, BRANDT L et al. Continuous growth of Droplet size variance due to condensation in turbulent clouds[J]. Physical Review Letters, 115, 184501(2015).
[8] KUMAR B, GOTZFRIED P, SURESH N et al. Scale dependence of cloud microphysical response to turbulent entrainment and mixing[J]. Journal of Advances in Modeling Earth Systems, 10, 2777(2018).
[9] GRABOWSKI W W, WANG L P. Growth of cloud droplets in a turbulent environment[J]. Annual Review of Fluid Mechanics, 45, 293-324(2013).
[10] BAREKZAI M, MAYER B. turbulent parcel simulations[J]. Journal of the Atmospheric Sciences, 77, 1993(2020).
[11] THOMAS L, GRABOWSKI W W, KUMAR B. DNS, scaled-up DNS, and stochastic model[J]. Atmospheric Chemistry and Physics, 20, 9087(2020).
[12] WANG Jun, ZHAO Jianlin, QIN Chuan et al. Digital holographic interferometry based on wavelength and angular multiplexing for measuring the ternary diffusion[J]. Optics Letters, 37, 1211-1213(2012).
[13] RAUPACH S M F, VOSSING H J, CURTIUS J et al. Digital crossed-beam holography for in situ imaging of atmospheric ice particles[J]. Journal of Optics A: Pure and Applied Optics, 8, 796-806(2006).
[14] FUGAL J P, SCHULZ T J, SHAW R A[J]. Atmospheric Science, 2, 259-271(2009).
[15] CHAMBERS T E, HAMILTON M W, REID I M. A low cost digital holographic imager for calibration and validation of cloud microphysics remote sensing[C], 10001, 100010P(2017).
[16] BEALS J M, FUGAL J P, SHAW R A et al. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale[J]. Science, 350, 87-90(2015).
[17] MENG Hui, PAN Gang, PU Ye et al. Holographic particle image velocimetry: from film to digital recording[J]. Measurement Science and Technology, 15, 673-685(2004).
[18] SHENG J, MALKIEL E, KATZ J. D near wall velocity and wall shear stress in a turbulent boundary layer[J]. Experiments in Fluids, 45, 1023-1035(3).
[19] JONG J D, SALAZAR J P L C, WOODWARD S H et al. Measurement of inertial particle clustering and relative velocity statistics in isotropic turbulence using holographic imaging[J]. International Journal of Multiphase Flow, 36, 324-332(2010).
[20] GAO Jian, KATZ J. D flow measurements[J]. Optics Express, 26, 16708-16725(3).
Get Citation
Copy Citation Text
Pan GAO, Jun WANG, Jiabin TANG, Yangzi GAO, Jingjing LIU, Qing YAN, Dengxin HUA. Investigation of Turbulence Parameters Based on Liquid-phase Cloud Microphysics Fluctuation Measured by Digital Holography[J]. Acta Photonica Sinica, 2021, 50(7): 212
Category: Atmospheric and Oceanic Optics
Received: Mar. 29, 2021
Accepted: Apr. 20, 2021
Published Online: Sep. 1, 2021
The Author Email: