Opto-Electronic Science, Volume. 4, Issue 6, 240028(2025)

Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges

Peili Gao, Chan Li, Hao Zhou, Songhua He, Zhen Yin*, Kar Wei Ng**, and Shuangpeng Wang***
Figures & Tables(13)
Sequential chart of key achievements in the evolution of eco-friendly QLEDs.
Key challenges in the development of InP-based QDs and ZnSe-based QDs.
The synthesis strategies for InP QDs. (a) Gradient shell QDs. (b) Multi-shelled QDs synthesized with aminophosphine. (c) Introducing a GaP layer between the InP core and ZnS shell to passivate the surface and eliminate traps. (d) Potential distribution and energy level shifts in core-shell heterostructured QDs with high PLQY. (e) Epitaxial deposition of ZnS on InP QDs. (f) Suppressing the cation exchange at the core/shell interface of InP QDs. (g) Temperature gradient solution growth strategy for the growth of the inner shell layer. (h) A quasi-ZnSe shell to minimize surface defects in the InP core with Ostwald ripening hindrance and lifetime extension. (i) ZnF2-assisted synthesis for removing the surface oxide layer of InP QDs to produce high-lifetime QLEDs. Figure reproduced with permission from: (a) ref.33, Elsevier; (b) ref.56, John Wiley and Sons; (c) ref.82, American Chemical Society; (d) ref.40, Springer Nature; (e) ref.42, (f) ref.83, (g) ref.84, American Chemical Society; (h) ref.52, John Wiley and Sons; (i) ref.37, American Chemical Society.
The synthesis strategies for ZnSe QDs. (a) Synthesis scheme for large ZnSe/ZnS QDs. (b) Bulk-like ZnSe core QDs. (c) A reactivity-controlled epitaxial growth strategy. (d) Alloyed ZnSeTe QDs with high PLQY. (e) Heterostructural tailoring of blue ZnSeTe QDs. (f) Controlling the internal ZnSe shell thickness of the QDs. (g) Controlling shell growth of ZnSeTe QDs. (h) Chematic illustrations of the synthesis of ZnTeSe (core), ZnTeSe/ZnSe (C/S) and ZnTeSe/ZnSe/ZnS (C/S/S) QDs, with corresponding TEM images. (i) Influence of Te clustering on optical properties of ZnSeTe QDs. Figure reproduced with permission from: (a) ref.35, Elsevier; (b) ref.70, American Chemical Society; (c) ref.86, Springer Nature; (d) ref.36, American Chemical Society; (e) ref.66, Elsevier; (f) ref.68, John Wiley and Sons; (g) ref.71, John Wiley and Sons; (h) ref.65, Springer Nature; (i) ref.88, John Wiley and Sons.
The ligand exchange strategies for InP QDs. (a) Replacing oleic acid ligands with hexanoic acid. (b) Substituting oleic acid ligands with semiconducting diblock copolymer units. (c) Modifying InP QDs with different alkyl diamines. (d) Investigating the ligand effect in the passivation of InP QDs. Figure reproduced with permission from: (a) ref.22, Springer Nature; (b) ref.99, Royal Society of Chemistry; (c) ref.23, Springer Nature; (d) ref.95, John Wiley and Sons.
ZnSe QDs ligand exchange strategies. (a) Chloride passivation via liquid or solid ligand exchange with oleic acid. (b) Bromide decoration of ZnSeTe/ZnSe/ZnS QDs. (c) Oleic acid surface ligand exchange with an alkanethiol variant. (d) Introduction of 4MBZC as a dual-ion passivation ligand. Figure reproduced with permission from: (a) ref.65, Springer Nature; (b) ref.76, John Wiley and Sons; (c) ref.100, (d) ref.94, American Chemical Society.
Development of QLED device structure.
The improvement of the charge balance in InP-QLEDs. (a) Acrylate-functionalized ZnMgO. (b) The PEABr:MABr interlayer between ZnMgO and Al cathode. (c) Organic PO-T2T as an ETL to prevent the over-injection of electrons, leading to improved charge balance within the QLEDs. The molecular structure of (d) BFTP-regulated TFB self-assembled dipole interface monolayer, enhancing hole injection efficiency into InP QDs. (e) B-PTAA as an alternative material for HTL with high hole mobility and a deep HOMO level. (f) DBTA utilized as HTL. (g) A blended EML by combining DOFL-TPD with InP-based QD. Figure reproduced with permission from: (a) ref.54, American Chemical Society; (b) ref.111, Royal Society of Chemistry; (c) ref.49, John Wiley and Sons; (d) ref.47, Royal Society of Chemistry; (e) ref.38, Tsinghua University Press; (f) ref.41, American Chemical Society; (g) ref.39, American Chemical Society.
Enhancements in charge balancing of blue ZnSe-based QLEDs. (a) Illustration of the structure and energy level alignment in a conventional QLED device. (b) Modification of ZnMgO NPs through additional Mg reaction. (c) Employment of Sn-doped ZnO to mitigate electron over-injection. (d) Demonstration of ZnSeTe-based blue top-emitting QLEDs. Figure reproduced with permission from: (a) ref.114, Royal Society of Chemistry; (b) ref.72, (c) ref.69, American Chemical Society; (d) ref.67, Springer Nature.
The degradation mechanisms of InP-based QLEDs. (a) The impacts of the electron delocalization and the associated energy transfers on the characteristics of InP-based QLEDs. (b) The STEM and HR-TEM images. (c) Photoluminescence spectra of QDs in varying magnetic fields. (d) Depiction of exciton decoherence as a phonon-mediated, thermally activated process. (e) Emission quenching of InP/ZnSe/ZnS QDs under UV exposure. Figure reproduced with permission from: (a) ref.115, (b) ref.20, John Wiley and Sons; (c) ref.116, American Chemical Society; (d) ref.117, American Chemical Society; (e) ref.118, Springer Nature.
Mechanism for the blue emission of ZnSe-based QLED. (a) Radial probabilities for the presence of electrons and holes of excitons in QD with/without irradiation. (b) Absorption (dashed line) and PL spectra (solid line) of ZnSe QDs with varying Te ratios and ZnSe shell thicknesses. (c) The temperature-dependent PL spectroscopy of the main and tail emission. (d) Size-dependent molar absorption coefficients. (e) PL spectra along with schematic diagrams. (f) Impact of nearest-neighbor pairs of Te atoms on the optical properties of ZnSe/ZnSe1–XTeX/ZnSe/ZnS NCs; Copyright 2022, American Chemical Society. (g) Morphological and crystalline structural changes upon excess HF treatment over the synthesis process. Figure reproduced with permission from: (a) ref.120, American Chemical Society; (b) ref.121, authors; ref.122, John Wiley and Sons; (c) ref.58, (e) ref.123, (f) ref.124, American Chemical Society; (g) ref.125, John Wiley and Sons.
Recent progress on eco-friendly QD patterning technologies. (a) Inkjet-printed QLED utilizing blue InP/ZnS/ZnS QDs as emission layer. (b) Nanoimprinting-aided inkjet-printed QLED for enhanced light extraction. (c) Cadmium-free RGB inkjet-printed QLED. (d) Comparison of InP-based green QLEDs printed with and without photoinitiator inclusion. Figure reproduced with permission from: (a) ref.126, (b) ref.127, Elsevier; (c) ref.128, John Wiley and Sons; (d) ref.129, Royal Society of Chemistry.
  • Table 1. Performance of the InP-based QDs and ZnSe-based QLEDs.

    View table
    View in Article

    Table 1. Performance of the InP-based QDs and ZnSe-based QLEDs.

    ColorQD architecturePLQY/FWHM(nm)EQE @ EL peak(%)Brightness(cd·m−2)Lifetime @ initial luminance(h)Reference
    RedInP/ZnSe92/3822.2 @ 630110,000T95 @ 1,000 cd·m−2=500Nano Lett. 2022, 22, 4067ref.37
    InP/ZnS80/4320.4 @ 62824,080T50 @ 100 cd·m−2=18Nano Res. 2023, 16, 7511-7517ref.38
    InP/ZnSe/ZnS100/3621.4 @ 630100,000T75 @ 1,000 cd·m−2 =4,300Nature 2019, 575, 634ref.22
    InP/ZnSe/ZnS95/3518.6 @ 630128,577T75 @ 100 cd·m−2 =107,772ACS Energy Lett. 2021, 6, 1577-1585ref.39
    InP/ZnSn90/18.3 @ 61323,451Nat. Mater. 2022, 21, 246-252ref.40
    InP/ZnSe/ZnS92/-18.0 @ 630128,577T50 @ 1,000 cd·m−2 =1,095ACS Energy Lett. 2020, 5, 3868-3875ref.41
    InP/ZnSe/ZnS93/4218.0 @ 63010,000J. Am. Chem. Soc. 2019, 141, 6448-6452ref.42
    InP/ZnSe/ZnS17.2 @ 63025,000T75 @ 2,500 cd·m−2=74J. Am. Chem. Soc. 2022, 144(45), 20923-20930ref.43
    InP/ZnSe/ZnS/3616.0 @ 63325,606-Advanced Electronic Materials 2024, 2400195ref.44
    GreenInP/ZnSe/ZnS90/3426.7 @ 543277,000T95 @ 1000 cd·m−2=1,200Nature 2024, 635, 854-859ref.45
    InP/ZnSe/ZnS91/3512.7 @ 534175,000T50 @ 100 cd·m−2=20,000Materials Futures 2024, 3(2), 025201.ref.46
    InP/ZnSe/ZnS/438.5 @ 53518.356T50 @ 100 cd·m−2=500Nanoscale 2023, 15, 2837-2842ref.47
    InP/ZnSe/ZnS86/3916.3 @ 54512,646T50 @ 100 cd·m−2=1,033Commun. Mater. 2021, 2, 1ref.23
    InP/ZnSeS/ZnS97/3515.2 @ 532N/AN/ALight Sci. Appl. 2022, 11, 162ref.48
    InP/ZnSe/ZnS54/4315.0 @ 53810,010T50 @ 100 cd·m−2=1,430Adv. Opt. Mater. 2022, 10, 2202066ref.49
    InP/ZnSe/ZnS90/3613.8 @ 53916,788T50 @ 100 cd·m−2=5,944Adv. Opt. Mater. 2023, 11, 2300659ref.50
    InP/ZnSe/ZnS82/3413.6 @53113,900N/AChem. Commun. 2019, 55, 13299ref.51
    InP/ZnSe/ZnS91/3610.6 @ 54015,606T50 @ 100 cd·m−2=5,462Adv. Sci. 2022, 2200959ref.52
    InP/ZnSe/ZnS87/406.2 @ 5406,600Light: Sci. Appl. 2022, 11, 162ref.48
    InP/ZnSeS/279.6 @ 53340,700T50 @ 2,000 cd·m−2=1.20Adv. Opt. Mater. 2023, 11, 2300088ref.53
    InP/ZnSe/ZnS87/389.3 @ 53413,445ACS Energy Lett. 2022, 7, 2247ref.54
    InP/ZnSe/ZnS90/497.8 @ 5354,955T50 @ 100 cd·m−2=402Adv. Sci. 2022, 9, 2200959ref.52
    InP/ZnSeS/ZnS95/457.0 @ 5251,836Nano Res. 2021, 14, 4243ref.55
    InP/ZnSeS/ZnS97/406.8 @ 5404,884Adv. Funct. Mater. 2021, 31, 2008453ref.56
    InP/GaP/ZnS/ZnS30/-6.3 @ 5303,000Adv. Opt. Mater. 2019, 7, 1801602ref.57
    ZnSeTe/ZnSe/ZnSeS/ZnS80/4510.10 @ 52383,556T50 @ 1,000 cd·m−2=52ACS Energy Lett. 2023, 8(2), 1131-1140ref.58
    BlueInP/ZnS/ZnS93/472.6 @ 474422Adv. Opt. Mater. 2022, 10, 2200685ref.59
    InGaP/ZnSeS/ZnS82/472.5 @ 4651,038Chem. Mater. 2020, 32(8), 3537-3544ref.60
    InP/ZnS/ZnS45/471.7 @ 485N/AAdv. Funct. Mater. 2020, 30, 2005303ref.61
    InP/ZnS52/491.4 @ 4831,162Adv. Opt. Mater. 2022, 10, 2102372ref.62
    InP/GaP/ZnS81/451.0 @ 4883,120J. Phys. Chem. Lett. 2020, 11(3), 960-967ref.63
    InP/ZnS/ZnS2.1 @ 485165Appl. Phys. Lett. 2021, 119(22), 221105ref.64
    ZnTeSe/ZnSe/ZnS100/3520.2 @ 46088,900T50 @ 100 cd·m−2 =15,850Nature 2020, 586, 385ref.65
    ZnSeTe/ZnSe/ZnS90/2318.6 @ 4584,366T50 @ 1,000 cd·m−2=0.4Chem. Eng. J. 2022, 429, 132464ref.66
    ZnSeTe/ZnSe/ZnS/5418.2 @ 47622,000Nano Res. 2023, 16, 5517-5524ref.67
    ZnSeTe/ZnSe/ZnS95/2218 @ 4523,520T50 @ 100 cd·m−2=49.1Small 2023, 19, 2303247ref.68
    ZnSe/ZnS93/1213.6 @ 4431,031T50 @ 100 cd·m−2=305ACS Photonics 2022, 9, 1400-1408ref.69
    ZnSe/ZnS95/1212.2 @ 445Nano Lett. 2021, 21, 7252-7260ref.70
    ZnSeTe/ZnSe/ZnS100/2310.9 @ 44810,240Adv. Funct. Mater. 2024, 2313811ref.71
    ZnSeTe/ZnSe/ZnSeS/ZnS84/279.5 @ 4452,904ACS Energy Lett. 2020, 5, 1568-1576ref.72
    ZnSe/ZnS69/167.8 @ 4252,632Nanoscale 2015, 7, 2951-2959ref.73
    ZnSe/ZnS55/166.8 @ 433450Small 2020, 16, 2002109ref.74
    ZnS/ZnTeSe/ZnS85/236.8 @ 44614,146Chem. Mater. 2020, 32, 5200-5207ref.75
    ZnSeTe/ZnSe/ZnS86/225.4 @ 443332T50 @ 120 cd·m−2=0.1Adv. Mater. Interfaces. 2023, 10, 2202241ref.76
    ZnSe/ZnSe/ZnS70/324.2 @ 4551,195T50 @ 200 cd·m−2=0.1ACS Appl. Mater. Interfaces 2019, 11, 46062-46069ref.36
    ZnSeTe/ZnSe/ZnS80/164.0 @ 4453,200Journal Ind. Eng. Chem. 2020, 348-355ref.77
    ZnSe/ZnS/ZnS53/142.6 @ 444100Nanoscale 2021, 13, 4562-4568ref.78
Tools

Get Citation

Copy Citation Text

Peili Gao, Chan Li, Hao Zhou, Songhua He, Zhen Yin, Kar Wei Ng, Shuangpeng Wang. Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges[J]. Opto-Electronic Science, 2025, 4(6): 240028

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Oct. 28, 2024

Accepted: Dec. 16, 2024

Published Online: Sep. 4, 2025

The Author Email: Zhen Yin (ZYin), Kar Wei Ng (KWNg), Shuangpeng Wang (SPWang)

DOI:10.29026/oes.2025.240028

Topics