Journal of Quantum Optics, Volume. 31, Issue 1, 10202(2025)
Experimental Study on Low-loss Silicon Nitride Micro-ring Resonators for Generation of Squeezed States
[1] [1] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 1935, 47(10):777. DOI: 10.1103/PhysRev.47.777.
[2] [2] HNDCHEN V, EBERLE T, STEINLECHNER S, et al. Observation of one-way Einstein-Podolsky-Rosen steering[J]. Nature Photonics, 2012, 6(9):596-599. DOI: 10.1038/nphoton.2012.202.
[3] [3] CAVES C M. Quantum limits on noise in linear amplifiers[J]. Physical Review D, 1982, 26(8):1817. DOI: 10.1103/PhysRevD.26.1817.
[4] [4] GROTE H, DANZMANN K, DOOLEY K L, et al. First long-term application of squeezed states of light in a gravitational-wave observatory[J]. Physical Review Letters, 2013, 110(18):181101. DOI: 10.1103/PhysRevLett.110.181101.
[5] [5] XIAO M, WU L A, KIMBLE H J. Precision measurement beyond the shot-noise limit[J]. Physical Review Letters, 1987, 59(3):278-281. DOI: 10.1103/PhysRevLett.59.278.
[6] [6] GRANGIER P, SLUSHER R E, YURKE B, et al. Squeezed-light-enhanced polarization interferometer[J]. Physical Review Letters, 1987, 59(19):2153. DOI: 10.1103/PhysRevLett.59.2153.
[7] [7] MCKENZIE K, SHADDOCK D A, MCCLELLAND D E, et al. Experimental demonstration of a squeezing-enhanced power-recycled Michelson interferometer for gravitational wave detection[J]. Physical Review Letters, 2002, 88(23):231102. DOI: 10.1103/PhysRevLett.88.231102.
[8] [8] VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Demonstration of a squeezed-light-enhanced power-and signal-recycled Michelson interferometer[J]. Physical Review Letters, 2005, 95(21):211102. DOI: 10.1103/PhysRevLett.95.211102.
[9] [9] VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Squeezed-field injection for gravitational wave interferometers[J]. Classical and Quantum Gravity, 2006, 23(8): S251. DOI: 10.1088/0264-9381/23/8/S32.
[10] [10] FURUSAWA A, SRENSEN J L, BRAUNSTEIN S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389):706-709. DOI: 10.1126/science.282.5389.706.
[11] [11] BRAUNSTEIN S L, KIMBLE H J. Teleportation of continuous quantum variables[J]. Physical Review Letters, 1998, 80(4):869. DOI: 10.1103/PhysRevLett.80.869.
[12] [12] MENICUCCI N C, VAN LOOCK P, GU M, et al. Universal quantum computation with continuous-variable cluster states[J]. Physical Review Letters, 2006, 97(11):110501. DOI: 10.1103/PhysRevLett.97.110501.
[13] [13] HAMILTON C S, KRUSE R, SANSONI L, et al. Gaussian boson sampling[J]. Physical Review Letters, 2017, 119(17):170501. DOI: 10.1103/PhysRevLett.119.170501.
[14] [14] EBLER D, SALEK S, CHIRIBELLA G. Enhanced communication with the assistance of indefinite causal order[J]. Physical Review Letters, 2018, 120(12):120502. DOI: 10.1103/PhysRevLett.120.120502.
[15] [15] PIRANDOLA S, EISERT J, WEEDBROOK C, et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9(10):641-652. DOI: 10.1038/nphoton.2015.154.
[16] [16] BUSSIRES F, CLAUSEN C, TIRANOV A, et al. Quantum teleportation from a telecom-wavelength photon to a solidstate quantum memory[J]. Nature Photonics, 2014, 8(10):775-778. DOI: 10.1038/nphoton.2014.215.
[17] [17] WU Y, ZHOU J, GONG X, et al. Continuous-variable measurement-device-independent multipartite quantum communication[J]. Physical Review A, 2016, 93(2):022325. DOI: 10.1103/PhysRevA.93.022325.
[18] [18] SUN Q C, MAO Y L, JIANG Y F, et al. Entanglement swapping with independent sources over an optical-fiber network[J]. Physical Review A, 2017, 95(3):032306. DOI: 10.1103/PhysRevA.95.032306.
[19] [19] DUTT A, LUKE K, MANIPATRUNI S, et al. On-chip optical squeezing[J]. Physical Review Applied, 2015, 3(4):044005. DOI: 10.1103/PhysRevApplied.3.044005.
[20] [20] VAIDYA V D, MORRISON B, HELT L G, et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device[J]. Science Advances, 2020, 6(39): eaba9186. DOI: 10.1126/sciadv.aba9186.
[21] [21] ZHAO Y, OKAWACHI Y, JANG J K, et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip[J]. Physical Review Letters, 2020, 124(19):193601. DOI: 10.1103/PhysRevLett.124.193601.
[22] [22] YANG Z, JAHANBOZORGI M, JEONG D, et al. A squeezed quantum microcomb on a chip[J]. Nature Communications, 2021, 12(1):4781. DOI: 10.1038/s41467-021-25054-z.
[23] [23] WANG Z, LI K, WANG Y, et al. Chip-scale generation of 60-mode continuous-variable cluster states[Z/OL]. arxiv preprint arxiv:2406.10715, 2024. DOI: 10.48550/arXiv.2406.10715.
[24] [24] VAHLBRUCH H, MEHMET M, DANZMANN K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J]. Physical Review Letters, 2016, 117(11):110801. DOI: 10.1103/PhysRevLett.117.110801.
[25] [25] KASHIWAZAKI T, TAKANASHI N, YAMASHIMA T, et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide[J]. APL Photonics, 2020, 5(3):036104. DOI: 10.1063/1.5142437.
[26] [26] HEEBNER J E, WONG V, SCHWEINSBERG A, et al. Optical transmission characteristics of fiber ring resonators[J]. IEEE Journal of Quantum Electronics, 2004, 40(6):726-730. DOI: 10.1109/JQE.2004.828232.
[27] [27] CHREMMOS I, SCHWELB O, UZUNOGLU N. Photonic microresonator research and applications[M]. New York: Springer, 2010. DOI: 10.1007/978-1-4419-1744-7.
Get Citation
Copy Citation Text
BAI Jieren, ZHOU Xiaoyan, GUO Xueshi, LI Xiaoying, ZHANG Lin. Experimental Study on Low-loss Silicon Nitride Micro-ring Resonators for Generation of Squeezed States[J]. Journal of Quantum Optics, 2025, 31(1): 10202
Category:
Received: Oct. 10, 2024
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: ZHOU Xiaoyan (xiaoyan_zhou@tju.edu.cn)