Laser & Infrared, Volume. 55, Issue 2, 170(2025)
Development and application of infrared holographic technology
[2] [2] Chivian J S, Claytor R N, Eden D D. Infrared holography at 10.6 m[J]. Applied Physics Letters, 1969, 15(4): 123-125.
[3] [3] Frazier G F, Wilkerson T D, Lindsay J M. Infrared photography at 5 m and 10 m[J]. Applied Optics, 1976, 15(6): 1350-1352.
[4] [4] Olsen J N. Picosecond infrared holography on bismuth film[J]. Applied Physics Letters, 1974, 24(5): 220-222.
[5] [5] Noiret N, Meyer C, Lougnot D J. Photopolymers for holographic recording. V. self-processing systems with near infrared sensitivity[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1994, 3(1): 55.
[6] [6] Ravaro M, Locatelli M, Pugliese E, et al. Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser[J]. Optics Letters, 2014, 39(16): 4843-4846.
[7] [7] Beaulieu R, Lessard R A, Cormier M, et al. Infrared holography on commerical wax at 10.6 m[J]. Applied Physics Letters, 1977, 31(9): 602-603.
[8] [8] Lewandowski J, Mongeau B, Cormier M. Real-time interferometry using IR holography on oil films[J]. Applied Optics, 1984, 23(2): 242-246.
[9] [9] Georges M P, Vandenrijt J F, Thizy C, et al. Speckle interferometry at 10 m with CO2 lasers and microbolometers array[C]//Photonics North 2012. SPIE, 2012, 8412: 432-439.
[10] [10] Rukman G I, Lisyanskii B E, Morozov P A, et al. Holography in the IR region of the spectrum, based on scanning image converters[J]. Measurement Techniques, 1978, 21(5): 635-636.
[11] [11] Lϕkberg O J, Kwon O. Electronic speckle pattern interferometry using a CO2 laser[J]. Optics & Laser Technology, 1984, 16(4): 187-192.
[12] [12] Allaria E, Brugioni S, De Nicola S, et al. Digital holography at 10.6 m[J]. Optics Communications, 2003, 215(4-6): 257-262.
[13] [13] Geltrude A, Locatelli M, Poggi P, et al. Infrared digital holography for large object investigation[C]//Digital Holography and Three-Dimensional Imaging. Optica Publishing Group, 2011: DWC13.
[14] [14] Locatelli M, Pugliese E, Paturzo M, et al. Imaging live humans through smoke and flames using far-infrared digital holography[J]. Optics Express, 2013, 21(5): 5379-5390.
[15] [15] Bianco V, Memmolo P, Paturzo M, et al. On-speckle suppression in IR digital holography[J]. Optics Letters, 2016, 41(22): 5226-5229.
[16] [16] Mensah P, Locatelli M, Pugliese E, et al. Scanning digital holography at 10.6 m for large scene reconstruction[J]. Journal of Physics Communications, 2018, 2(5): 055018.
[17] [17] Zhang D, Feng H, Zheng Z, et al. Research on scanning infrared digital holography with large field of view[C]//Twelfth International Conference on Information Optics and Photonics. SPIE, 2021, 12057: 993-998.
[19] [19] Repetto L, Chittofrati R, Piano E, et al. Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers[J]. Optics Communications, 2005, 251(1-3): 44-50.
[20] [20] Delacrtaz Y, Bergond I, Depeursinge C. Digital holographic microscopy for micro-systems investigation in near infrared[C]//3rd EOS Topical Meeting on Optical Microsystems, Capri, Italy, EOS, 2009.
[21] [21] Joshi B, Barman I, Dingari N C, et al. Label-free route to rapid, nanoscale characterization of cellular structure and dynamics through opaque media[J]. Scientific Reports, 2013, 3(1): 2822.
[22] [22] Xi T, Di J, Guan X, et al. Phase-shifting infrared digital holographic microscopy based on an all-fiber variable phase shifter[J]. Applied Optics, 2017, 56(10): 2686-2690.
[23] [23] Xi T, Dou J, Di J, et al. Short-coherence in-line phase-shifting infrared digital holographic microscopy for measurement of internal structure in silicon[C]//Fifth International Conference on Optical and Photonics Engineering. SPIE, 2017, 10449: 281-286.
[24] [24] Finkeldey M, Gring L, Brenner C, et al. Depth-filtering in common-path digital holographic microscopy[J]. Optics Express, 2017, 25(16): 19398-19407.
[25] [25] Picart P, Gross M, Marquet P. Basic fundamentals of digital holography[J]. New Techniques in Digital Holography, 2015: 1-66.
[26] [26] Alexeenko I, Vandenrijt J F, Georges M, et al. Digital holographic interferometry by using long wave infrared radiation (CO2 laser)[J]. Applied Mechanics and Materials, 2010, 24: 147-152.
[27] [27] Vandenrijt J F, Thizy C, Alexeenko I, et al. Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions[J]. Optical Engineering, 2013, 52(10): 101903-101903.
[28] [28] Pelagotti A, Paturzo M, Geltrude A, et al. Digital holography for 3D imaging and display in the IR range: challenges and opportunities[J]. 3D Research, 2010, 1(4): 1-10.
[29] [29] Lu J, Zeng Y, Chang X, et al. Quantitative phase imaging of cells through turbid media based on infrared digital holographic microscopy[J]. Applied Physics Express, 2021, 14(3): 035004.
[30] [30] Georges M P, Vandenrijt J F, Thizy C, et al. Speckle interferometry at 10 micrometers wavelength: a combined thermography and interferometry technique and its application in aeronautical nondestructive testing[C]//Interferometry XVII: Advanced Applications. SPIE, 2014, 9204: 88-95.
[31] [31] Georges M P, Vandenrijt J F, Thizy C, et al. Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths[J]. Optics Express, 2014, 22(21): 25517-25529.
[32] [32] Georges M P. Speckle interferometry in the long-wave infrared for combining holography and thermography in a single sensor: applications to nondestructive testing: the fantom Project[C]//Optical Measurement Systems for Industrial Inspection IX. SPIE, 2015, 9525: 343-357.
[33] [33] Xi T, Dai S, Li Y, et al. Measurement of thermal effect in laser pumped silicon employing infrared digital holographic interferometry[J]. Optics Express, 2019, 27(7): 9439-9446.
[34] [34] Lai B, Zhang Y, Zhang C. Ultrathin silicon wafer defect detection method based on IR micro-digital holography[J]. Applied Optics, 2023, 62(15): 4040-4046.
[35] [35] Dyomin V, Polovtsev I, Kamenev D. Quality control of ZnGeP2 single crystals using optical methods[J]. Russian Physics Journal, 2016, 58(10): 1479-1481.
[36] [36] Dyomin V V, Polovcev I G, Kamenev D V. The internal defects detection in crystals by digital holographic methods[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 737(1): 012072.
[37] [37] Dyomin V, Gribenyukov A, Podzyvalov S, et al. Application of infrared digital holography for characterization of inhomogeneities and voluminous defects of single crystals on the example of ZnGeP2[J]. Applied Sciences, 2020, 10(2): 442.
[38] [38] Gribenyukov A I, Dyomin V V, Olshukov A S, et al. Investigation of the process of optical damage of ZnGeP2 crystals using digital holography[J]. Russian Physics Journal, 2019, 61: 2042-2052.
[39] [39] Dyomin V V, Gribenyukov A I, Davydova A Y, et al. Visualization of volumetric defects and dynamic processes in crystals by digital IR-holography[J]. Applied Optics, 2021, 60(4): A296-A305.
[40] [40] Georges M P, Vandenrijt J F, Thizy C, et al. Digital holographic interferometry with CO2 lasers applied to aspheric space reflectors testing[C]//Digital Holography and Three-Dimensional Imaging. Optica Publishing Group, 2013: DW3A.4.
[41] [41] Vandenrijt J F, Thizy C, Queeckers P, et al. Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors[J]. Optical Engineering, 2014, 53(11): 112309-112309.
[42] [42] Vandenrijt J F, Thizy C, Stockman Y, et al. Digital holographic interferometry in the long-wave infrared for the testing of large aspheric space reflectors[C]//Fringe 2013: 7th International Workshop on Advanced Optical Imaging and Metrology. Springer Berlin Heidelberg, 2014: 921-924.
[43] [43] Georges M P, Vandenrijt J F, Thizy C, et al. Digital holographic interferometry with CO2 lasers and diffuse illumination applied to large space reflector metrology[J]. Applied Optics, 2013, 52(1): A102-A116.
[44] [44] Paturzo M, Pelagotti A, Finizio A, et al. Optical reconstruction of digital holograms recorded at 10.6 m: route for 3D imaging at long infrared wavelengths[J]. Optics Letters, 2010, 35(12): 2112-2114.
[45] [45] Paturzo M, Pelagotti A, Geltrude A, et al. Infrared digital holography applications for virtual museums and diagnostics of cultural heritage[C]//O3A: Optics for Arts, Architecture, and Archaeology III. SPIE, 2011, 8084: 151-156.
[46] [46] Stoykova E, Yara F, Kang H, et al. Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination[J]. Optics Letters, 2012, 37(15): 3120-3122.
[47] [47] Locatelli M, Pugliese E, Paturzo M, et al. Seeing through smoke and flames: a challenge for imaging capabilities, met thanks to digital holography at far infrared[C]//Optical Measurement Systems for Industrial Inspection VIII. SPIE, 2013, 8788: 126-131.
[48] [48] Poggi P, Locatelli M, Pugliese E, et al. Remote monitoring of building oscillation modes by means of real-time mid infrared digital holography[J]. Scientific Reports, 2016, 6(1): 23688.
[51] [51] Bianco V, Paturzo M, Locatelli M, et al. Looking through smoke and flames by lensless digital holography at far infrared[C]//Digital Holography and Three-Dimensional Imaging. Optica Publishing Group, 2013: DW5A.2.
[52] [52] Bianco V, Paturzo M, Locatelli M, et al. Looking beyond smoke and flames. a challenge for people safety, met thanks to Digital Holography at 10.6 m[C]//The European Conference on Lasers and Electro-Optics. Optica Publishing Group, 2013: JSII_1_4.
[53] [53] Locatelli M, Pugliese E, Paturzo M, et al. Lensless digital holography improves fire safety[J]. Optics and Photonics News, 2013, 24(12): 26-26.
[54] [54] Ferraro P. Infrared Digital Holography as new 3D imaging tool for first responders and firefighters: recent achievements and perspectives[J]. CLEO: Applications and Technology, 2014: AW1P.6.
[55] [55] Bianco V, Paturzo M, Finizio A, et al. Revealing fire survivors hidden behind smoke and flames by IR active imaging systems[C]//2014 International Carnahan Conference on Security Technology (ICCST). IEEE, 2014: 1-3.
[56] [56] Liu N, Yang C, Cao H. Noise suppression of the reconstruction of infrared digital holography based on pyramid-based bilateral filter[J]. Infrared Physics & Technology, 2017, 85: 352-358.
[57] [57] Feng H, Zhang D, Liu S, et al. Reconstruction of infrared digital holography based on compressed sensing[C]//Sixteenth National Conference on Laser Technology and Optoelectronics. SPIE, 2021, 11907: 673-679.
Get Citation
Copy Citation Text
LIU Pei, ZHANG Yong-an, ZHANG Bing, GAO Zi-xin, BI Wen-bin, FU Rui-jin. Development and application of infrared holographic technology[J]. Laser & Infrared, 2025, 55(2): 170
Category:
Received: Jun. 22, 2024
Accepted: Apr. 3, 2025
Published Online: Apr. 3, 2025
The Author Email: ZHANG Yong-an (1295720542@qq.com)