Chinese Journal of Lasers, Volume. 50, Issue 4, 0402001(2023)

In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion

Hao Zhang1,2,3, Yaqing Hou1,2, Xuandong Wang1,2, and Hang Su2、*
Author Affiliations
  • 1Central Iron & Steel Research Institute, Beijing 100081, China
  • 2Material Digital R and D Center, China Iron & Steel Research Institute Group, Beijing 100081, China
  • 3ADRAYN Technology Co., Ltd., Chongqing 400050, China
  • show less
    Figures & Tables(13)
    SEM morphologies of powders. (a) Fe powder; (b) Cr powder; (c) Ni powder; (d) elemental mixed powder; (e) 304L pre-alloyed powder
    Macro appearance of samples and laser energy density value. (a) Macro appearance of 304L in-situ alloyed samples prepared by LPBF using elemental mixed powder; (b) laser energy density value
    LPBF process window, where dotted lines represent laser energy density
    OM morphologies of 304L in-situ alloyed samples and pre-alloyed powder LPBF sample. (a) Sample A1; (b) sample S3; (c) sample S6; (d) sample A1
    Melt pool SEM morphologies of 304L in-situ alloyed samples and pre-alloyed powder LPBF sample. (a) Sample A1; (b) sample S3; (c) sample S6; (d) sample A1
    EDS analysis of 304L in-situ alloyed samples. (a) S3 sample; (b) S6 sample
    EDS analysis of 304L in-situ alloyed sample. (a) Mass fraction of Fe; (b) mass fraction of Cr; (c) mass fraction of Ni; (d) mass fraction deviation
    EBSD grain orientation and phase distribution of 304L in-situ alloyed LPBF samples and pre-alloyed powder LPBF sample. (a)-(c) Grain orientation maps of S3, S6, and A1 samples; (d)-(f) phase distribution maps of S3, S6, and A1 samples; (g)-(i) histograms of grain size distribution of S3, S6, and A1 samples
    Thermodynamic phase diagrams of 304L austenitic stainless steel. (a) Temperature changing phase diagram; (b) 1200 ℃ isothermal phase diagram with Cr content increasing
    Microhardness of 304L in-situ alloyed samples and pre-alloyed powder LPBF sample
    • Table 1. Powder particle size distribution

      View table

      Table 1. Powder particle size distribution

      MaterialD10 /μmD50 /μmD90 /μmAverage powder size /μm
      Fe11.9928.4851.1026.82
      Cr24.4243.4771.2341.19
      Ni24.1738.6860.1636.04
      304L pre-alloyed powder18.6033.4453.2830.12
    • Table 2. Chemical composition of 304L pre-alloyed powder and elemental mixed powder

      View table

      Table 2. Chemical composition of 304L pre-alloyed powder and elemental mixed powder

      MaterialMass fraction /%
      FeCrNiSiMnSPCO
      304L pre-alloyed powderBalance19.469.590.590.920.0070.0120.0180.028
      Elemental mixed powderBalance18.8910.910.020.0170.0030.0050.0030.120
    • Table 3. Sample number, process parameters, and relative density

      View table

      Table 3. Sample number, process parameters, and relative density

      Sample No.P /Wv /(mm·s-1E /(J·mm-3Density /(g·cm-3Relative density /%
      S1110650717.70397.14
      S21706501097.77298.01
      S32306501477.85599.05
      S42906501867.84698.94
      S52305002177.79898.34
      S62905002427.80298.39
      A12306501477.85699.07
    Tools

    Get Citation

    Copy Citation Text

    Hao Zhang, Yaqing Hou, Xuandong Wang, Hang Su. In-Situ Alloying of 304L Stainless Steel by Laser Powder Bed Fusion[J]. Chinese Journal of Lasers, 2023, 50(4): 0402001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Mar. 7, 2022

    Accepted: Apr. 18, 2022

    Published Online: Feb. 7, 2023

    The Author Email: Su Hang (hangsu@vip.sina.com)

    DOI:10.3788/CJL220642

    Topics