Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1590(2023)

FRKDNet:feature refine semantic segmentation network based on knowledge distillation

Shi-yi JIANG1, Yang XU1,2、*, Dan-yang LI1, and Run-ze FAN1
Author Affiliations
  • 1College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China
  • 2Guiyang Aluminum-magnesium Design and Research Institute Co.Ltd.,Guiyang 550009,China
  • show less
    Figures & Tables(13)
    Network structure of model
    Feature refine module
    Distance calculation module
    Results of hyperparameter ablation experiment
    Segmentation results of Cityscapes
    Comparison of segmentation accuracy of different categories
    Comparison of segmentation results of Pascal VOC validation
    Comparison of different backbone networks
    Segmentation results of Pascal VOC
    • Table 0. [in Chinese]

      View table
      View in Article

      Table 0. [in Chinese]

      算法1:FRKDNet:基于知识蒸馏的特征提炼语义分割网络

      算法,通过处理未经最终Softmax层的训练结果WTWS,得到类间距离损失函数Linter与类内距离损失函数Lintra,实现知识蒸馏。

      输入:数据集D,教师网络训练结果WT,学生网络初始结果WS

      输出:类间距离损失函数Linter,类内距离损失函数Lintra,交叉熵损失函数Lcls

      1:while 训练循环 do

      2:  将WTWS经过特征提炼模块得到WT*WS*

      3:  Linter(WT*,WS*)——(8)

      4:  Lintra(WT*,WS*)——(9)

      5:  L(Linter,Lintra,Lcls)——公式(10)

      6:  利用损失函数L更新学生网络

      7:end

    • Table 1. Ablation experiment

      View table
      View in Article

      Table 1. Ablation experiment

      骨干网络Lcls特征提炼模块LinterLintraMIoU/%
      T:ResNet10177.74
      S:ResNet1872.08
      S:ResNet1874.33
      S:ResNet1875.61
      S:ResNet1875.02
      S:ResNet1876.53
    • Table 2. Comparison of experimental results of different methods

      View table
      View in Article

      Table 2. Comparison of experimental results of different methods

      方法Params/MFLOPs/GMIoU/%
      Pascal VOCCityscapes
      T:ResNet10156.01 870.077.6777.74
      S:ResNet1814.07270.572.1572.08
      +SKD1672.77(+0.62)72.86(+0.78)
      +SKDD1773.60(+1.45)73.51(+1.43)
      +IFVD972.24(+0.09)72.32(+0.24)
      +CD1074.08(+1.93)75.48(+3.4)
      +Ours74.19(+2.04)76.53(+4.45)
    • Table 3. Comparative experiment of different methods in Cityscapes

      View table
      View in Article

      Table 3. Comparative experiment of different methods in Cityscapes

      方法Params/MFLOPs/GMIoU/%
      ENet60.3583.61258.3
      ESPNet180.3644.42260.3
      ERFNet192.06725.6068.0
      ICNet726.5028.3069.5
      FCN20134.5333.962.7
      RefineNet21118.1525.773.6
      T:DeepLabV3+-ResNet10156.01 870.077.74
      S:DeepLabV3+-ResNet1814.07270.576.53
    Tools

    Get Citation

    Copy Citation Text

    Shi-yi JIANG, Yang XU, Dan-yang LI, Run-ze FAN. FRKDNet:feature refine semantic segmentation network based on knowledge distillation[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1590

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 10, 2023

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Yang XU (xuy@gzu.edu.cn)

    DOI:10.37188/CJLCD.2023-0010

    Topics