Journal of Synthetic Crystals, Volume. 54, Issue 3, 386(2025)

Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models

YIN Changshuai1, MENG Biao2, LIANG Kang1, CUI Hanwen1, LIU Sheng1, and ZHANG Zhaofu1、*
Author Affiliations
  • 1The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
  • 2JFS Laboratory, Wuhan 430206, China
  • show less
    References(24)

    [1] [1] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001.

    [2] [2] ZHANG Z P, CHEN M N, BAI X P, et al. Sensitive direct-conversion X-ray detectors formed by ZnO nanowire field emitters and -Ga2O3 photoconductor targets with an electron bombardment induced photoconductivity mechanism[J]. Photonics Research, 2021, 9(12): 2420.

    [3] [3] QIAO G, CAI Q, MA T C, et al. Nanoplasmonically enhanced high-performance metastable phase -Ga2O3 solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40283-40289.

    [5] [5] HOSSAIN E, KULKARNI R, MONDAL R, et al. Optimization of gas ambient for high quality -Ga2O3 single crystals grown by the optical floating zone technique[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3144-Q3148.

    [6] [6] GALAZKA Z. Growth of bulk -Ga2O3 single crystals by the Czochralski method[J]. Journal of Applied Physics, 2022, 131(3): 031103.

    [7] [7] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of -Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506.

    [8] [8] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of -Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41.

    [9] [9] GAO X, MA K K, JIN Z, et al. Characteristics of 4-inch (100) oriented Mg-doped -Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2024, 987: 174162.

    [10] [10] SHI S Y, LIU D, HUO Z R. Simulation of thermoelastic coupling in silicon single crystal growth based on alternate two-stage physics-informed neural network[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106468.

    [11] [11] REN J C, LIU D, WAN Y. Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies[J]. Journal of Process Control, 2021, 104: 74-85.

    [13] [13] NUNES E M, NARAGHI M H N, ZHANG H, et al. A volume radiation heat transfer model for Czochralski crystal growth processes[J]. Journal of Crystal Growth, 2002, 236(4): 596-608.

    [14] [14] KOBAYASHI M, HAGINO T, TSUKADA T, et al. Effect of internal radiative heat transfer on interface inversion in Czochralski crystal growth of oxides[J]. Journal of Crystal Growth, 2002, 235(1/2/3/4): 258-270.

    [15] [15] VOROB'EV A, GALYUKOV A, SMIRNOV A, et al. Numerical model of species transport and melt stoichiometry in -Ga2O3 crystal growth[J]. Journal of Crystal Growth, 2022, 583: 126526.

    [16] [16] CHAYAB DRAA A, MOKHTARI F, LASLOUDJI I, et al. Internal radiation effect on semiconductor -Ga2O3 crystals grown by the VB Method and anisotropic thermal stress[J]. Journal of Crystal Growth, 2024, 648: 127910.

    [17] [17] LE C C, LI Z Y, MU W X, et al. 3D numerical design of the thermal field before seeding in an edge-defined film-fed growth system for -Ga2O3 ribbon crystals[J]. Journal of Crystal Growth, 2019, 506: 83-90.

    [18] [18] CHEN C H, CHEN J C, LU C W, et al. Numerical simulation of heat and fluid flows for sapphire single crystal growth by the Kyropoulos method[J]. Journal of Crystal Growth, 2011, 318(1): 162-167.

    [19] [19] HADDAD F, BOUZOUAOUI Y Z, MOKHTARI F, et al. Computational analysis of radiative heat transfer in Czochralski furnace and 3D anisotropic thermal stress in Li2MoO4 bulk crystal[J]. Crystal Research and Technology, 2022, 57(10): 2270019.

    [20] [20] FANG H S, JIN Z L, ZHANG M J, et al. Role of internal radiation at the different growth stages of sapphire by Kyropoulos method[J]. International Journal of Heat and Mass Transfer, 2013, 67: 967-973.

    [22] [22] BU Y Z, SAI Q L, QI H J. Stability of interfacial thermal balance in thick -Ga2O3 crystal growth by EFG[J]. Journal of Crystal Growth, 2023, 612: 127194.

    [23] [23] TANG X, LIU B T, YU Y, et al. Numerical analysis of difficulties of growing large-size bulk -Ga2O3 single crystals with the czochralski method[J]. Crystals, 2021, 11(1): 25.

    [24] [24] KALYANA KUMAR M, SUDERSANAN P D. A study on thermomechanical properties of zirconium di oxide coated piston material of various thickness and its comparison with uncoated material[J]. Materials Today: Proceedings, 2021, 45: 294-298.

    [25] [25] KLIMM D, BERTRAM R, GALAZKA Z, et al. High melting point oxides-a challenge for crystal growth[J]. Crystal Research and Technology, 2012, 47(3): 247-252.

    [26] [26] MILLER W, BTTCHER K, GALAZKA Z, et al. Numerical modelling of the Czochralski growth of -Ga2O3[J]. Crystals, 2017, 7(1): 26.

    [27] [27] STELIAN C, BARTHALAY N, DUFFAR T. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals[J]. Journal of Crystal Growth, 2017, 470: 159-167.

    Tools

    Get Citation

    Copy Citation Text

    YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models[J]. Journal of Synthetic Crystals, 2025, 54(3): 386

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 15, 2024

    Accepted: Apr. 23, 2025

    Published Online: Apr. 23, 2025

    The Author Email: ZHANG Zhaofu (zhaofuzhang@whu.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2024.0292

    Topics