Journal of Quantum Optics, Volume. 27, Issue 2, 117(2021)

Experimental Study on Optical Cavity Enhanced Coupling between Light and Cold Atoms and Spin Wave Readout Efficiency

WANG Sheng-zhi1,2, WANG Min-jie1,2, MA Teng-fei1,2, LI Shu-jing1,2, XU Zhong-xiao1,2, and WANG Hai1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Sangouard N, Simon C, de Riedmatten H, Gisin N. Quantum repeaters based on atomic ensembles and linear optics[J]. Review of Modern Physics, 2011, 83(1): 33-34. DOI: 10.1103/RevModPhys.83.33.

    [2] [2] Simon C. Towards a global quantum network[J]. Nature Photonics, 2017, 11(11): 678-680. DOI: 10.1038/ s41566-017-0032-0.

    [3] [3] Bussières F, Sangouard N, Afzelius M, et al. Prospective applications of optical quantum memories[J]. Journal of Modern Optics, 2013, 60(18): 1519-1537. DOI: 10.1080/09500340.2013.856482.

    [4] [4] Kimble H J. The Quantum Internet[J]. Nature, 2008, 453(7198): 1023-1030. DOI: 10.1038/nature07127.

    [5] [5] Wehner S, Elkouss D, Hanson R. Quantum internet: A vision for the road ahead[J]. Science, 2018, 362(6412): 303-303. DOI: 10.1126/science.aam9288.

    [6] [6] Inagaki T, Matsuda N, Tadanaga O, et al. Entanglement distribution over 300 km of fiber[J]. Optics Express, 2013, 21(20): 23241-23249. DOI: 10.1364/OE.21.023241.

    [7] [7] Korzh B, Lim C C W, Houlmann R, et al. Provably secure and practical quantum key distribution over 307 km of optical fibre[J]. Nature Photonics, 2014, 9(3): 163-168. DOI: 10.1038/nphoton.2014.327.

    [8] [8] Chen G H, Wang H C, Chen Z F. Discrete vortices on anisotropic lattices[J]. Frontiers of Physics, 2015, 10: 1-6. DOI: 10.1007/s11467-015-0494-9.

    [9] [9] Chrapkiewicz R, Wasilewski W. Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapors[J]. Optics Express, 2012, 20(28): 29540. DOI: 10.1364/OE.20.029540.

    [10] [10] Briegel H J, Dür, W, Cirac J, et al. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication[J]. Phys Rev Lett, 1998, 81(26): 5932-5935. DOI: 10.1103/PhysRevLett.81.59.

    [11] [11] Ding D S, Zhang W, Zhou Z Y, et al. Raman quantum memory of photonic polarized entanglement[J]. Nature Photonics, 2015, 9(5): 332-338. DOI: 10.1038/nphoton.2015.43.

    [12] [12] Jiang Y, Rui J, Bao X H, et al. Dynamical zeroing of spin-wave momentum to suppress motional dephasing in an atomic-ensemble quantum memory[J]. Physical Review A, 2016, 93(6): 063819. DOI: 10.1103/PhysRevA.93.063819.

    [13] [13] Piparo N L, Razavi M. Long-distance quantum key distribution with imperfect devices[J]. Physical Review A, 2013, 88(1): 12332-12332. DOI: http://dx.doi.org/10.1103/PhysRevA.88.012332.

    [14] [14] Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418. DOI: 10.1038/35106500.

    [15] [15] Man Z X, Zhang Y J, Su F, et al. Entanglement dynamics of multiqubit system in Markovian and non-Markovian reservoirs[J]. European Physical Journal D, 2010, 58(1): 147-151. DOI: 10.1140/epjd/e2010-00094-7.

    [16] [16] Lvovsky A I, Sanders B C, Tittel W. Optical quantum memory[J]. Nature Photonics, 2009, 3(12): 706-714. DOI: 10.1038/nphoton.2009.231.

    [17] [17] Bao X H, Reingruber A, Dietrich P, et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nature Physics, 2012, 8(7): 517-521. DOI: 10.1038/nphys2324.

    [18] [18] Zhang S C, J. F. Chen, et al. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth[J]. Review of Scientific Instruments, 2012, 83(7): 073102. DOI: 10.1063/1.4732818.

    [19] [19] Zhang Z Y, Wu Y L, Xu Z X, et al. The Relationship between Light Storage Efficiency and Repumping Intensity in Cold Atom Medium[J]. Acta Sinica Quantum Optica, 2013, 19(4): 340-345.

    [20] [20] Yang S J, Wang X J, Li J, et al. Highly Retrievable Spinwave-Photon Entanglement Source[J]. Physical Review Letters, 2015, 114(21): 210501. DOI: 10.1103/physrevlett.114.210501.

    [21] [21] Novikova I, Phillips N B, Gorshkov A V. Optimal light storage with full pulse shape control[J]. Physical Review A, 2008, 78(2): 021802. DOI: 10.1103/PhysRevA.78.021802.

    [22] [22] Vasilakis G, Shen H, Jensen K, et al. Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement[J]. Nature Physics, 2015, 11(5): 389-392. DOI: 10.1038/nphys3280.

    [23] [23] Yu Y, Ma F, Luo X Y, et al. Entanglement of two quantum memories via fibres over dozens of kilometres[J]. Nature, 2020, 578(7794): 240-245. DOI: 10.1038/s41586-020-1976-7.

    [24] [24] Jing B, Wang X J, Yu Y, et al. Entanglement of three quantum memories via interference of three single photons[J]. Nature Photonics, 2019, 13(3): 210-213. DOI: 10.1038/s41566-018-0342-x.

    Tools

    Get Citation

    Copy Citation Text

    WANG Sheng-zhi, WANG Min-jie, MA Teng-fei, LI Shu-jing, XU Zhong-xiao, WANG Hai. Experimental Study on Optical Cavity Enhanced Coupling between Light and Cold Atoms and Spin Wave Readout Efficiency[J]. Journal of Quantum Optics, 2021, 27(2): 117

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 7, 2021

    Accepted: --

    Published Online: Sep. 13, 2021

    The Author Email: WANG Hai (wanghai@sxu.edu.cn)

    DOI:10.3788/jqo20212702.0401

    Topics