Frontiers of Optoelectronics, Volume. 14, Issue 4, 426(2021)

Optical generation of UWB pulses utilizing Fano resonance modulation

Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, and Linjie ZHOU*
Author Affiliations
  • State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Shanghai Institute for Advanced Communication and Data Science, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(50)

    [1] [1] Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nature Photonics, 2019, 13(2): 80–90

    [2] [2] Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE Journal of Quantum Electronics, 2016, 52(1): 1–12

    [3] [3] Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219– 3235

    [4] [4] Zhou L, Sun Q, Lu L, Chen J. Programmable universal microwavephotonic filter based on cascaded dual-ring assisted MZIs. In: Proceedings of Smart Photonic and Optoelectronic Integrated Circuits XX. San Francisco: SPIE, 2018, 105361G

    [5] [5] Yang R, Zhou L, Wang M, Zhu H, Chen J. Application of SOI microring coupling modulation in microwave photonic phase shifters. Frontiers of Optoelectronics, 2016, 9(3): 483–488

    [6] [6] Zhong Y, Zhou L, Zhou Y, Xia Y, Liu S, Lu L, Chen J, Wang X. Microwave frequency upconversion employing a coupling-modulated ring resonator. Photonics Research, 2017, 5(6): 689–694

    [7] [7] Zhuang L, Roeloffzen C G H, Meijerink A, Burla M, Etten W C V. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. Journal of Lightwave Technology, 2010, 28(1): 19–31

    [8] [8] Yao J. Photonics for ultrawideband communications. IEEE Microwave Magazine, 2009, 10(4): 82–95

    [9] [9] i F. Indoor positioning and navigation chips, key technologies for next-generation smart devices. 2019. Available at mp.weixin.qq. com/s/VswdBtAifrpx69t7xG-ppw (in Chinese)

    [10] [10] Federal Communication Commission. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, 2002

    [11] [11] FiRa. What UWB does. Available at firaconsortium.org/discover/ what-uwb-does

    [12] [12] Li J, Fu S, Xu K, Wu J, Lin J, Tang M, Shum P. Photonic ultrawideband monocycle pulse generation using a single electrooptic modulator. Optics Letters, 2008, 33(3): 288–290

    [13] [13] Zhou E, Xu X, Lui K, Wong K K. A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions. IEEE Photonics Technology Letters, 2010, 22(14): 1063–1065

    [14] [14] Li P, Chen H, Chen M, Xie S. Gigabit/s photonic generation, modulation, and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photonics Journal, 2012, 4(3): 805– 816

    [15] [15] Zeng F, Yao J. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragggrating- based frequency discriminator. IEEE Photonics Technology Letters, 2006, 18(19): 2062–2064

    [16] [16] Wang Q, Yao J. Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter. Optics Express, 2007, 15(22): 14667–14672

    [17] [17] Shehata M, Mostafa H, Ismail Y. On the theoretical limits of the power efficiency of photonically generated IR-UWB waveforms. Journal of Lightwave Technology, 2018, 36(10): 2017–2023

    [18] [18] Feng H, Fok M P, Xiao S, Ge J, Zhou Q, Locke M, Toole R, Hu W. A reconfigurable high-order UWB signal generation scheme using RSOA-MZI structure. IEEE Photonics Journal, 2014, 6(2): 1–7

    [19] [19] Hongqian M, Muguang W, Shuisheng J. Photonic generation of power-efficient UWB pulses adaptable to multiple modulation formats using a dual-drive Mach-Zehnder modulator. In: Proceedings of the 15th International Conference on Optical Communications and Networks (ICOCN). Hangzhou: IEEE, 2016, 1–3

    [20] [20] Liow T Y, Song J, Tu X, Lim A E J, Fang Q, Duan N, Yu M, Lo G Q. Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 8200312

    [21] [21] Abraha S T, Okonkwo C M, Tangdiongga E, Koonen A M. Powerefficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses. Optics Letters, 2011, 36(12): 2363–2365

    [22] [22] Luo B, Dong J, Yu Y, Zhang X. Bandwidth-tunable single-carrier UWB monocycle generation using a nonlinear optical loop mirror. IEEE Photonics Technology Letters, 2012, 24(18): 1646–1649

    [23] [23] Yue Y, Huang H, Zhang L,Wang J, Yang J Y, Yilmaz O F, Levy J S, Lipson M, Willner A E. UWB monocycle pulse generation using two-photon absorption in a silicon waveguide. Optics Letters, 2012, 37(4): 551–553

    [24] [24] Wang Q, Yao J. UWB doublet generation using nonlinearly-biased electro-optic intensity modulator. Electronics Letters, 2006, 42(22): 1304

    [25] [25] Moreno V, Rius M, Mora J, Muriel M A, Capmany J. UWB monocycle generator based on the non-linear effects of an SOAintegrated structure. IEEE Photonics Technology Letters, 2014, 26 (7): 690–693

    [26] [26] Moreno V, Connelly M J, Romero-Vivas J, Krzczanowicz L, Mora J, Muriel M A, Capmany J. Integrated 16-ps pulse generator based on a reflective SOA-EAM for UWB schemes. IEEE Photonics Technology Letters, 2016, 28(20): 2180–2182

    [27] [27] Moreno V, Rius M, Mora J, Muriel M A, Capmany J. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI. Optics Express, 2013, 21(19): 22911– 22917

    [28] [28] Wu T, Wu J, Choi Y, Chiu Y. Novel scheme of optical Ultra-Wide- Band generation using a single electroabsorption modulator. In: Proceedings of IEEE LEOS Annual Meeting Conference. Belek- Antalya: IEEE, 2009, 509–510

    [29] [29] Kuo Y, Wu J, Chen R, Chiu Y. Photonic Ultra-wide-band doublet pulse using tapered-directional coupler integrated electroabsorption modulator. In: Proceedings of the 21st AnnualWireless and Optical Communications Conference (WOCC). Kaohsiung: IEEE, 2012, 196–197

    [30] [30] Xu K, Wu X, Sung J, Cheng Z. Amplitude and phase modulation of UWB monocycle pulses on a silicon photonic chip. IEEE Photonics Technology Letters, 2016, 28(3): 248–251

    [31] [31] Liu F,Wang T, Zhang Z, Qiu M, Su Y. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45 (24): 1247–1249

    [32] [32] Mirshafiei M, LaRochelle S, Rusch L A. Optical UWB waveform generation using a micro-ring resonator. IEEE Photonics Technology Letters, 2012, 24(15): 1316–1318

    [33] [33] Wu X, Xu K, Zhou W, Chow C W, Tsang H K. Scalable ultrawideband pulse generation based on silicon photonic integrated circuits. IEEE Photonics Technology Letters, 2017, 29(21): 1896– 1899

    [34] [34] Shao H, Chen W, Zhao Y, Chi H, Yang J, Jiang X. Performance evaluation of photonic UWB generation based on silicon MZM. Optics Express, 2012, 20(7): 7398–7403

    [35] [35] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonance in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298

    [36] [36] Wang F,Wang X, Zhou H, Zhou Q, Hao Y, Jiang X,Wang M, Yang J. Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer. Optics Express, 2009, 17(9): 7708–7716

    [37] [37] Dyshlyuk A V. Tunable Fano-like resonances in a bent single-mode waveguide-based Fabry-Perot resonator. Optics Letters, 2019, 44 (2): 231–234

    [38] [38] Zhang C, Kang G, Xiong Y, Xu T, Gu L, Gan X, Pan Y, Qu J. Photonic thermometer with a sub-millikelvin resolution and broad temperature range by waveguide-microring Fano resonance. Optics Express, 2020, 28(9): 12599–12608

    [39] [39] Chang C M, Solgaard O. Fano resonances in integrated silicon Bragg reflectors for sensing applications. Optics Express, 2013, 21 (22): 27209–27218

    [40] [40] Zhao G, Zhao T, Xiao H, Liu Z, Liu G, Yang J, Ren Z, Bai J, Tian Y. Tunable Fano resonances based on microring resonator with feedback coupled waveguide. Optics Express, 2016, 24(18): 20187–20195

    [41] [41] Zhou L, Poon A W. Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach- Zehnder interferometers. Optics Letters, 2007, 32(7): 781–783

    [42] [42] Zheng S, Ruan Z, Gao S, Long Y, Li S, He M, Zhou N, Du J, Shen L, Cai X, Wang J. Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform. Optics Express, 2017, 25(21): 25655–25662

    [43] [43] Cheng Z, Dong J, Zhang X. Ultra-compact optical switch using single semi-symmetric Fano nanobeam cavity. Optics Letters, 2020, 45(8): 2363

    [44] [44] Dong G,Wang Y, Zhang X. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Optics Letters, 2018, 43(24): 5977

    [45] [45] Zhang W, Yao J. Thermally tunable ultracompact Fano resonator on a silicon photonic chip. Optics Letters, 2018, 43(21): 5415–5418

    [46] [46] Li S, Zhang Y, Song X, Wang Y, Yu L. Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system. Optics Express, 2016, 24(14): 15351–15361

    [47] [47] Zhu B, Zhang W, Pan S, Yao J. High-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated fano resonator. Journal of Lightwave Technology, 2019, 37(11): 2527–2533

    [48] [48] Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11: 543–554

    [49] [49] Zhou G, Zhou L, Zhou Y, Zhong Y, Liu S, Guo Y, Liu L, Chen J. Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction. In: Proceedings of the 10th International Conference on Information Optics and Photonics (CIOP). Beijing: SPIE, 2018, 55

    [50] [50] Li P, Chen H, Wang X, Yu H, Chen M, Xie S. Photonic generation and transmission of 2-Gbit/s power-efficient IR-UWB signals employing an electro-optic phase modulator. IEEE Photonics Technology Letters, 2013, 25(2): 144–146.

    Tools

    Get Citation

    Copy Citation Text

    Zhe XU, Yanyang ZHOU, Shuhuang CHEN, Liangjun LU, Gangqiang ZHOU, Jianping CHEN, Linjie ZHOU. Optical generation of UWB pulses utilizing Fano resonance modulation[J]. Frontiers of Optoelectronics, 2021, 14(4): 426

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Feb. 4, 2020

    Accepted: Jun. 22, 2020

    Published Online: Jan. 10, 2022

    The Author Email: Linjie ZHOU (ljzhou@sjtu.edu.cn)

    DOI:10.1007/s12200-020-1010-6

    Topics