Chinese Journal of Lasers, Volume. 49, Issue 24, 2407207(2022)
Study on Tooth Cone Beam CT Image Reconstruction Based on Improved U-net Network
[1] Lechuga L, Weidlich G A. Cone beam CT vs. fan beam CT: a comparison of image quality and dose delivered between two differing CT imaging modalities[J]. Cureus, 8, e778(2016).
[2] Pavaloiu I B, Goga N, Marin I et al. Automatic segmentation for 3D dental reconstruction[C](2015).
[3] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1, 321-331(1988).
[4] Wang L X, Liu X X, Liu X Y et al. Quantitative segmentation and measurement of tooth from computed tomography image based on regional adaptive deformation model[J]. Journal of Biomedical Engineering, 33, 308-314(2016).
[5] Miki Y, Muramatsu C, Hayashi T et al. Classification of teeth in cone-beam CT using deep convolutional neural network[J]. Computers in Biology and Medicine, 80, 24-29(2017).
[6] Cui Z M, Li C J, Wang W P. ToothNet: automatic tooth instance segmentation and identification from cone beam CT images[C], 6361-6370(2019).
[7] Girdhar R, Gkioxari G, Torresani L et al. Detect-and-track: efficient pose estimation in videos[C], 350-359(2018).
[8] Zhu S S, Gao W R, Shi W S. GPU-based Fourier domain optical coherence tomography system for real time imaging of human skin[J]. Laser & Optoelectronics Progress, 55, 041701(2018).
[9] Liu H, Gao W R, Chen C L. Handheld spectral domain optical coherence tomography for in vivo tooth imaging[J]. Chinese Journal of Lasers, 43, 0204003(2016).
[10] Huang S, Hu Y, Gong C L et al. High precision three-dimensional face reconstruction algorithm based on gradient light image[J]. Acta Optica Sinica, 40, 0410001(2020).
[11] Dong S, Dai Y T, Dong E L et al. Three-dimensional reconstruction of dental impression based on multi-camera three-dimensional digital image correlation method[J]. Acta Optica Sinica, 35, 0812006(2015).
[12] Nicholas L[M]. Neural networks for pattern recognition(1997).
[14] LeCun Y, Bottou L, Bengio Y et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).
[15] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[16] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).
[17] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture Notes in Computer Science, 9351, 234-241(2015).
[18] Yang L, Wang H Y, Dong Z et al. Application of auto-focusing technology based on improved U-net in cell imaging[J]. Chinese Journal of Lasers, 49, 1507302(2022).
[19] Li D X, Zhang Z. Improved U-net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).
[20] Xie Y Z, Yan S J, Wei G F et al. Breast mass segmentation based on U-net++ and adversarial learning network[J]. Laser & Optoelectronics Progress, 59, 1617002(2022).
[21] Zhong Z L, Lin Z Q, Bidart R et al. Squeeze-and-attention networks for semantic segmentation[C], 13062-13071(2020).
[22] Lorensen W E, Cline H E. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 21, 163-169(1987).
Get Citation
Copy Citation Text
Haoxin Liu, Yuanmeng Zhao, Cunlin Zhang, Fengxia Zhu, Moxuan Yang. Study on Tooth Cone Beam CT Image Reconstruction Based on Improved U-net Network[J]. Chinese Journal of Lasers, 2022, 49(24): 2407207
Category: Optical Diagnostics and Therapy
Received: Aug. 16, 2022
Accepted: Oct. 21, 2022
Published Online: Dec. 19, 2022
The Author Email: Zhao Yuanmeng (zhao.yuanmeng@cnu.edu.cn)