Journal of Semiconductors, Volume. 40, Issue 8, 080301(2019)

Families of magnetic semiconductors — an overview

Tomasz Dietl1,2, Alberta Bonanni3, and Hideo Ohno2,4,5,6,7,8
Author Affiliations
  • 1International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
  • 2WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 3Institut für Halbleiter- und Festkörperphysik, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria
  • 4Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 5Center for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 6Center for Spintronics Integrated System, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • 7Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
  • 8Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • show less
    References(87)

    [1]

    [2] P K Baltzer, P J Wojtowicz, s M Robbins et al. Exchange interactions in ferromagnetic chromium chalcogenide spinels. Phys Rev, 151, 367(1966).

    [3]

    [4] T Kasuya, e A Yanase. Anomalous transport phenomena in Eu-chalcogenide alloys. Rev Mod Phys, 40, 684(1968).

    [5] E L Nagaev. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep, 346, 387(2001).

    [6] I Žutić, A Matos-Abiague, B Scharf et al. Proximitized materials. Mater Today, 22, 85(2019).

    [7] G Xu, H M Weng, Z J Wang et al. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys Rev Lett, 107, 186806(2011).

    [8] J Jungwirth, X Marti, y P Wadley et al. Antiferromagnetic spintronics. Nat Nanotech, 11, 231(2016).

    [9] H Li, S C Ruan, g Y J Zeng. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv Mater, 0, 1900065(2019).

    [10] L Webster, n J A Yan. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys Rev B, 98, 144411(2018).

    [11] A Haury, A Wasiela, t A Arnoult et al. Observation of a ferromagnetic transition induced by two-dimensional hole gas in modulationdoped CdMnTe quantum wells. Phys Rev Lett, 79, 511(1997).

    [12] B Huang, G Clark, E Navarro-Moratalla et al. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Nature, 546, 270(2019).

    [13]

    [14]

    [15]

    [16] J Spałek, A Lewicki, Z Tarnawski et al. Magnetic susceptibility of semimagnetic semiconductors: The high-temperature regime and the role of superexchange. Phys Rev B, 33, 3407(1986).

    [17] R R Gałązka. II–VI compounds — Polish perspective. Phys Stat Sol B, 243, 759(2006).

    [18] J C Andresen, r H G Katzgraber, n V Oganesyan et al. Existence of a thermodynamic spin-glass phase in the zero-concentration limit of anisotropic dipolar systems. Phys Rev X, 4, 041016(2014).

    [19]

    [20] M Król, R Mirek, K Lekenta et al. Spin polarized semimagnetic exciton-polariton condensate in magnetic field. Sci Rep, 8, 6694(2018).

    [21] C Betthausen, i P Giudici, h A Iankilevitch et al. Fractional quantum Hall effect in a dilute magnetic semiconductor. Phys Rev B, 90, 115302(2014).

    [22] R Fiederling, m M Keim, r G Reuscher et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 402, 787(1999).

    [23] B Leclercq, x C Rigaux, A Mycielski. Critical dynamics in Cd1–xMnxTe spin glasses. Phys Rev B, 47, 6169(1993).

    [24] J Jaroszyński, J Wróbel, G Karczewski et al. Magnetoconductance noise and irreversibilities in submicron wires of spin-glass n+-Cd1–xMnxTe. Phys Rev Lett, 80, 5635(1998).

    [25] T Dietl. Spin dynamics of a confined electron interacting with magnetic or nuclear spins: A semiclassical approach. Phys Rev B, 91, 125204(2015).

    [26] T Dietl. Hole states in wide band-gap diluted magnetic semiconductors and oxides. Phys Rev B, 77, 085208(2008).

    [27] W Pacuski, P Kossacki, D Ferrand et al. Observation of strong-coupling effects in a diluted magnetic semiconductor Ga1–xFexN. Phys Rev Lett, 100, 037204(2008).

    [28] L Besombes, Y Léger, L Maingault et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys Rev Lett, 93, 207403(2004).

    [29] J Kobak, T Smoleński, M Goryca et al. Designing quantum dots for solotronics. Nat Commun, 5, 3191(2014).

    [30] T Dietl, o H Ohno, a F Matsukura et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019(2000).

    [31] T Dietl, o H Ohno. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev Mod Phys, 86, 187(2014).

    [32] H Ohno. Making nonmagnetic semiconductors ferromagnetic. Science, 281, 951(1998).

    [33] T Story, R R Gałązka, R B Frankel et al. Carrier-concentration-induced ferromagnetism in PbSnMnTe. Phys Rev Lett, 56, 777(1986).

    [34] D Ferrand, t J Cibert, n C Bourgognon et al. Carrier-induced ferromagnetic interactions in p-doped Zn1–xMnxTe epilayers. J Cryst Growth, 214, 387(2000).

    [35] K Olejník, M H S Owen, V Novák et al. Enhanced annealing, high Curie temperature and low-voltage gating in (Ga, Mn)As: A surface oxide control study. Phys Rev B, 78, 054403(2008).

    [36] M Wang, n R P Campion, h A W Rushforth et al. Achieving high Curie temperature in (Ga, Mn)As. Appl Phys Lett, 93, 132103(2008).

    [37] L Chen, X Yang, H F Yang et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 11, 2584(2011).

    [38] Y Fukuma, a H Asada, i S Miyawaki et al. Carrierinduced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl Phys Lett, 93, 252502(2008).

    [39] M Hassan, z G Springholz, r R T Lechner et al. Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature. J Cryst Growth, 323, 363(2011).

    [40] K Zhao, B J Chen, G Q Zhao et al. Ferromagnetism at 230K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 59, 2524(2014).

    [41]

    [42] A Kazakov, G Simion, Y Lyanda-Geller et al. Mesoscopic transport in electrostatically defined spin-full channels in quantum Hall ferromagnets. Phys Rev Lett, 119, 046803(2017).

    [43] T Jungwirth, J Wunderlich, V Novák et al. Spin-dependent phenomena and device concepts explored in (Ga, Mn)As. Rev Mod Phys, 86, 855(2014).

    [44] Y Ohno, g D K Young, n B Beschoten et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402, 790(1999).

    [45] H Ohno, a D Chiba, a F Matsukura et al. Electric-field control of ferromagnetism. Nature, 408, 944(2000).

    [46] H Boukari, i P Kossacki, i M Bertolini et al. Light and electricfield control of ferromagnetism in magnetic quantum structures. Phys Rev Lett, 88, 207204(2002).

    [47] D Chiba, i M Sawicki, i Y Nishitani et al. Magnetization vector manipulation by electricfields. Nature, 455, 515(2008).

    [48] M Yamanouchi, D Chiba, a F Matsukura et al. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 428, 539(2004).

    [49] M Yamanouchi, a D Chiba, a F Matsukura et al. Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga, Mn)As. Phys Rev Lett, 96, 096601(2006).

    [50] C Gould, C Rüster, T Jungwirth et al. Tunneling anisotropic magnetoresistance: A spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett, 93, 117203(2004).

    [51] J Wunderlich, h T Jungwirth, r B Kaestner et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga, Mn)As single-electron transistor. Phys Rev Lett, 97, 077201(2006).

    [52] B A Bernevig, k O Vafek. Piezo-magnetoelectric effects in p-doped semiconductors. Phys Rev B, 72, 033203(2005).

    [53] A Chernyshov, y M Overby, X Y Liu et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spinorbit magneticfield. Nat Phys, 5, 656(2009).

    [54] S Kanai, F Matsukura, a S Ikeda et al. Spintronics: from basic research to VLSI application. AAPPS Bulletin, 25, 4(2015).

    [55] T Jungwirth, Q Niu, d A H MacDonald. Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett, 88, 207208(2002).

    [56] N Nagaosa, J Sinova, a S Onoda et al. Anomalous Hall effect. Rev Mod Phys, 82, 1539(2010).

    [57] H Ke, Y Y Wang, e Q K Xue. Topological materials: quantum anomalous Hall system. Annu Rev Cond Mat Phys, 9, 3293449(2018).

    [58] Y Tokura, a K Yasuda, i A Tsukazaki. Magnetic topological insulators. Nat Rev Phys, 110(2019).

    [59]

    [60] S Stefanowicz, G Kunert, s C Simserides et al. Phase diagram and critical behavior of a random ferromagnet Ga1–xMnxN. Phys Rev B, 88, 081201(2013).

    [61] A Bonanni, i M Sawicki, s T Devillers et al. Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga, Mn)N. Phys Rev B, 84, 035206(2011).

    [62] G Kunert, a S Dobkowska, T Li et al. Ga1–xMnxN epitaxial films with high magnetization. Appl Phys Lett, 101, 022413(2012).

    [63] I Y Korenblit, E F Shender, y B I Shklovsky. Percolation approach to the phase transition in the very dilute ferromagnetic alloys. Phys Lett A, 46, 275(1973).

    [64] D Sztenkiel, n M Foltyn, r G P Mazur et al. Stretching magnetism with an electricfield in a nitride semiconductor. Nat Commun, 7, 13232(2016).

    [65] C Z Chang, J S Zhang, X Feng et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167(2013).

    [66] R Yu, W Zhang, H J Zhang et al. Quantized anomalous Hall effect in magnetic topological insulators. Science, 329, 61(2010).

    [67] Y B Fan, X F Kou, P Upadhyaya et al. Electric-field control of spin-orbit torque in a magnetically doped topological insulator. Nat Nanotechnol, 352(2016).

    [68] D Bulmash, u C X Liu, i X L Qi. Prediction of a Weyl semimetal in Hg1–xyCdxMnyTe. Phys Rev B, 89, 081106(2014).

    [69] T Dietl, o H Ohno, a F Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 63, 195205(2001).

    [70] C Lewinert, d G Bastard. Indirect exchange interaction in extremely non-parabolic zerogap semiconductors. J Phys C, 13, 2347(1980).

    [71] M G Vergniory, M M Otrokov, D Thonig et al. Exchange interaction and its tuning in magnetic binary chalcogenides. Phys Rev B, 89, 165202(2014).

    [72] S Gupta, i S Kanai, F Matsukura et al. Magnetic and transport properties of Sb2Te3 doped with high concentration of Cr. Appl Phys Express, 10, 103001(2017).

    [73] E O Lachman, A F Young, A Richardella et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci Adv, 1, e1500740(2015).

    [74] M Götz, K M Fijalkowski, E Pesel et al. Precision measurement of the quantized anomalous Hall resistance at zero magneticfield. Appl Phys Lett, 112, 072102(2018).

    [75] E J Fox, n I T Rosen, Y F Yang et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys Rev B, 98, 075145(2018).

    [76] M Pohlit, S Rößler, Y Ohno et al. Evidence for ferromagnetic clusters in the colossal-magnetoresistance material EuB6. Phys Rev Lett, 120, 257201(2018).

    [77] T Dietl. Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn, 77, 031005(2008).

    [78] M Sawicki, a D Chiba, a A Korbecka et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nat Phys, 6, 22(2010).

    [79] A Richardella, n P Roushan, k S Mack et al. Visualizing critical correlations near the metal–insulator transition in Ga1–xMnxAs. Science, 327, 665(2010).

    [80] S Kuroda, a N Nishizawa, a K Takita et al. Origin and control of high temperature ferromagnetism in semiconductors. Nat Mater, 6, 440(2007).

    [81] A Bonanni, A Navarro-Quezada, T Li et al. Controlled aggregation of magnetic ions in a semiconductor: An experimental demonstration. Phys Rev Lett, 101, 135502(2008).

    [82] A Bonanni. (Nano)characterization of semiconductor materials and structures. Semicon Sci Technol, 26, 060301(2011).

    [83] T Dietl, o K Sato, a T Fukushima et al. Spinodal nanodecomposition in semiconductors doped with transition metals. Rev Mod Phys, 87, 1311(2015).

    [84] K Sato, L Bergqvist, J Kudrnovský et al. First-principles theory of dilute magnetic semiconductors. Rev Mod Phys, 82, 1633(2010).

    [85] A Bonanni, l T Dietl. A story of high-temperature ferromagnetism in semiconductors. Rev Chem Soc, 39, 528(2009).

    [86] M Birowska, C Śliwa, J A Majewski et al. Origin of bulk uniaxial anisotropy in zinc-blende dilute magnetic semiconductors. Phys Rev Lett, 108, 237203(2012).

    [87] Y Yuan, R Hübner, M Birowska et al. Nematicity of correlated systems driven by anisotropic chemical phase separation. Phys Rev Mater, 2, 114601(2018).

    Tools

    Get Citation

    Copy Citation Text

    Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview[J]. Journal of Semiconductors, 2019, 40(8): 080301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Comments and opinions

    Received: --

    Accepted: --

    Published Online: Sep. 18, 2021

    The Author Email:

    DOI:10.1088/1674-4926/40/8/080301

    Topics