Chinese Journal of Lasers, Volume. 50, Issue 17, 1714003(2023)

High‑Energy, Strong‑Field Terahertz Source and Lithium Niobate Crystal

Wenbin Han1, Dehui Sun1,3、*, Meng Wang1, Chenzhe Li1, Shouting Liu1, and Hong Liu1,2、**
Author Affiliations
  • 1Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, Shandong, China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
  • 3Shandong Hengyuan Semiconductor Technology Co., Ltd., Jinan 271100, Shandong, China
  • show less
    References(95)

    [1] Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources[J]. Advanced Optical Materials, 8, 1900681(2020).

    [2] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [3] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).

    [4] Hauri C P, Ruchert C, Vicario C et al. Strong-field single-cycle THz pulses generated in an organic crystal[J]. Applied Physics Letters, 99, 161116(2011).

    [5] Ruchert C, Vicario C, Hauri C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 37, 899-901(2012).

    [6] Ruchert C, Vicario C, Hauri C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 110, 123902(2013).

    [7] Boyd R W. Material slow light and structural slow light: similarities and differences for nonlinear optics[J]. Journal of the Optical Society of America B, 28, A38-A44(2011).

    [8] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 37, 191-203(1985).

    [9] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [10] Hebling J, Almasi G, Kozma I Z et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [11] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, e2208947(2023).

    [12] Chuang S L, Schmitt-Rink S, Greene B I et al. Optical rectification at semiconductor surfaces[J]. Physical Review Letters, 68, 102-105(1992).

    [13] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [14] Hattori T, Takeuchi K. Simulation study on cascaded terahertz pulse generation in electro-optic crystals[J]. Optics Express, 15, 8076-8093(2007).

    [15] Jewariya M, Nagai M, Tanaka K. Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3[J]. Journal of the Optical Society of America B, 26, A101-A106(2009).

    [16] Fülöp J A, Pálfalvi L, Almási G et al. Design of high-energy terahertz sources based on optical rectification[J]. Optics Express, 18, 12311-12327(2010).

    [17] Huang S W, Granados E, Huang W R et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 38, 796-798(2013).

    [18] Boes A, Chang L, Langrock C et al. Lithium niobate photonics: unlocking the electromagnetic spectrum[J]. Science, 379, eabj4396(2023).

    [19] Stepanov A G, Hebling J, Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics Letters, 83, 3000-3002(2003).

    [20] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).

    [21] Stepanov A G, Kuhl J, Kozma I Z et al. Scaling up the energy of THz pulses created by optical rectification[J]. Optics Express, 13, 5762-5768(2005).

    [22] Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification[J]. Optics Letters, 33, 2497-2499(2008).

    [23] Stepanov A G, Henin S, Petit Y et al. Mobile source of high-energy single-cycle terahertz pulses[J]. Applied Physics B, 101, 11-14(2010).

    [24] Fülöp J A, Pálfalvi L, Klingebiel S et al. Generation of sub-mJ terahertz pulses by optical rectification[J]. Optics Letters, 37, 557-559(2012).

    [25] Fülöp J A, Ollmann Z, Lombosi C et al. Efficient generation of THz pulses with 0.4 mJ energy[J]. Optics Express, 22, 20155-20163(2014).

    [26] Wu X J, Calendron A L, Ravi K et al. Optical generation of single-cycle 10 MW peak power 100 GHz waves[J]. Optics Express, 24, 21059-21069(2016).

    [27] Zhang B L, Ma Z Z, Ma J L et al. 1.4-mJ high energy terahertz radiation from lithium niobates[J]. Laser & Photonics Reviews, 15, 2000295(2021).

    [28] Wu X J, Zhou C, Huang W R et al. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range[J]. Optics Express, 23, 29729-29737(2015).

    [29] Abrahams S C, Hamilton W C, Reddy J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 27, 1013-1018(1966).

    [30] Gopalan V, Dierolf V, Scrymgeour D A. Defect-domain wall interactions in trigonal ferroelectrics[J]. Annual Review of Materials Research, 37, 449-489(2007).

    [31] Lerner P, Legras C, Dumas J P. Stoechiométrie des monocristaux de métaniobate de lithium[J]. Journal of Crystal Growth, 3/4, 231-235(1968).

    [32] Kong Y F, Xu J J, Chen X J et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra[J]. Journal of Applied Physics, 87, 4410-4414(2000).

    [33] Iyi N, Kitamura K, Izumi F et al. Comparative study of defect structures in lithium niobate with different compositions[J]. Journal of Solid State Chemistry, 101, 340-352(1992).

    [34] Volk T, Wöhlecke M, Rubinina N. Optical damage resistance in lithium niobate[M]. Günter P, Huignard J P. Photorefractive materials and their applications 2. Springer series in optical sciences, 114, 165-203(2007).

    [35] Carrascosa M, Villarroel J, Carnicero J et al. Understanding light intensity thresholds for catastrophic optical damage in LiNbO3[J]. Optics Express, 16, 115-120(2008).

    [36] Bryan D A, Gerson R, Tomaschke H E. Increased optical damage resistance in lithium niobate[J]. Applied Physics Letters, 44, 847-849(1984).

    [37] Sweeney K L, Halliburton L E, Bryan D A et al. Point defects in Mg-doped lithium niobate[J]. Journal of Applied Physics, 57, 1036-1044(1985).

    [38] Arizmendi L, Powell R C. Anisotropic self-diffraction in Mg-doped LiNbO3[J]. Journal of Applied Physics, 61, 2128-2131(1987).

    [39] Wang H, Wen J K, Li J A et al. Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals[J]. Applied Physics Letters, 57, 344-345(1990).

    [40] Zhang G Q, Tomita Y. Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO3:Mg[J]. Journal of Applied Physics, 91, 4177-4180(2002).

    [41] Pálfalvi L, Hebling J, Almási G et al. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3[J]. Journal of Applied Physics, 95, 902-908(2004).

    [42] Chen S L, Liu H D, Kong Y F et al. The resistance against optical damage of near-stoichiometric LiNbO3∶Mg crystals prepared by vapor transport equilibration[J]. Optical Materials, 29, 885-888(2007).

    [43] Zhao X A. Microscopic properties of Mg in Li and Nb sites of LiNbO3 by first-principle hybrid functional: formation and related optical properties[J]. The Journal of Physical Chemistry C, 121, 8968-8975(2017).

    [44] Sun D H, Song W, Li L L et al. Origin of ferroelectric modification: the thermal behavior of dopant ions[J]. Crystal Growth & Design, 18, 4860-4863(2018).

    [45] Sun D H, Kang X L, Yu Q A et al. Antisite defect elimination through Mg doping in stoichiometric lithium tantalate powder synthesized viaa wet-chemical spray-drying method[J]. Journal of Applied Crystallography, 48, 377-385(2015).

    [46] Kimura H, Uda S. Conversion of non-stoichiometry of LiNbO3 to constitutional stoichiometry by impurity doping[J]. Journal of Crystal Growth, 311, 4094-4101(2009).

    [47] Svaasand L O, Eriksrud M, Grande A P et al. Crystal growth and properties of LiNb3O8[J]. Journal of Crystal Growth, 18, 179-184(1973).

    [48] Abdi F, Aillerie M, Bourson P et al. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition[J]. Journal of Applied Physics, 84, 2251-2254(1998).

    [49] Kong Y, Li B, Chen Y et al. The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold[C], 53(2003).

    [50] Gopalan V, Mitchell T E, Furukawa Y et al. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals[J]. Applied Physics Letters, 72, 1981-1983(1998).

    [51] Furukawa Y, Kitamura K, Takekawa S et al. The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure[J]. Journal of Crystal Growth, 211, 230-236(2000).

    [52] Yan T, Leng Y H, Yu Y G et al. Growth of MgO doped near stoichiometric LiNbO3 single crystals by a hanging crucible Czochralski method using a ship lockage type powder feeding system assisted by numerical simulation[J]. CrystEngComm, 16, 6593-6602(2014).

    [53] Buzády A, Gálos R, Makkai G et al. Temperature-dependent terahertz time-domain spectroscopy study of Mg-doped stoichiometric lithium niobate[J]. Optical Materials Express, 10, 998-1006(2020).

    [54] Jang D, Sung J H, Lee S K et al. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate[J]. Optics Letters, 45, 3617-3620(2020).

    [55] Wang F L, Sun D H, Liu Q L et al. Growth of large size near-stoichiometric lithium niobate single crystals with low coercive field for manufacturing high quality periodically poled lithium niobate[J]. Optical Materials, 125, 112058(2022).

    [56] Bodrov S B, Murzanev A A, Sergeev Y A et al. Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes[J]. Applied Physics Letters, 103, 251103(2013).

    [57] Huang W R, Huang S W, Granados E et al. Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate[J]. Journal of Modern Optics, 62, 1486-1493(2015).

    [58] Ravi K, Huang W R, Carbajo S et al. Limitations to THz generation by optical rectification using tilted pulse fronts[J]. Optics Express, 22, 20239-20251(2014).

    [59] Kim Y S, Smith R T. Thermal expansion of lithium tantalate and lithium niobate single crystals[J]. Journal of Applied Physics, 40, 4637-4641(1969).

    [60] Xu G B, Mu X D, Ding Y J et al. Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate[J]. Optics Letters, 34, 995-997(2009).

    [61] Avetisyan Y, Zhang C H, Tonouchi M. Analysis of linewidth tunable terahertz wave generation in periodically poled lithium niobate[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 989-998(2012).

    [62] Ravi K, Schimpf D N, Kärtner F X. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate[J]. Optics Express, 24, 25582-25607(2016).

    [63] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D: Applied Physics, 39, R301-R310(2006).

    [64] Lee M, Katz H E, Erben C et al. Broadband modulation of light by using an electro-optic polymer[J]. Science, 298, 1401-1403(2002).

    [65] Hoffmann M C, Fülöp J A. Intense ultrashort terahertz pulses: generation and applications[J]. Journal of Physics D: Applied Physics, 44, 083001(2011).

    [66] Huang Y D, Meng C, Zhao J et al. High-harmonic and terahertz wave spectroscopy (HATS) for aligned molecules[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 49, 235601(2016).

    [67] Tang H, Zhao L R, Zhu P F et al. Stable and scalable multistage terahertz-driven particle accelerator[J]. Physical Review Letters, 127, 074801(2021).

    [68] Xu H X, Yan L X, Du Y C et al. Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J]. Nature Photonics, 15, 426-430(2021).

    [69] Park H, Camper A, Kafka K et al. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal[J]. Optics Letters, 42, 4020-4023(2017).

    [70] Carletti L, Li C, Sautter J et al. Second harmonic generation in monolithic lithium niobate metasurfaces[J]. Optics Express, 27, 33391-33398(2019).

    [71] Ma J J, Chen J X, Ren M X et al. Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films[J]. Optics Letters, 45, 145-148(2019).

    [72] Shcherbakov M R, Werner K, Fan Z Y et al. Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces[J]. Nature Communications, 10, 1345(2019).

    [73] Chen Z, Zhou X B, Werley C A et al. Generation of high power tunable multicycle teraherz pulses[J]. Applied Physics Letters, 99, 071102(2011).

    [74] Tian Q L, Xu H X, Wang Y et al. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification[J]. Optics Express, 29, 9624-9634(2021).

    [75] Zhang B L, Wu X J, Wang X A et al. Efficient multicycle terahertz pulse generation based on the tilted pulse-front technique[J]. Optics Letters, 47, 2678-2681(2022).

    [76] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [77] Liang X, Yu Y W, Liu R J et al. Flexoelectricity in periodically poled lithium niobate by PFM[J]. Journal of Physics D: Applied Physics, 55, 335303(2022).

    [78] Rustagi K, Mehendale S, Meenakshi S. Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals[J]. IEEE Journal of Quantum Electronics, 18, 1029-1041(1982).

    [79] Eyres L A, Tourreau P J, Pinguet T J et al. All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion[J]. Applied Physics Letters, 79, 904-906(2001).

    [80] Yamada M, Nada N, Saitoh M et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J]. Applied Physics Letters, 62, 435-436(1993).

    [81] Wang T X, Chen P C, Xu C et al. Periodically poled LiNbO3 crystals from 1D and 2D to 3D[J]. Science China Technological Sciences, 63, 1110-1126(2020).

    [82] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [83] Takesue H, Nam S W, Zhang Q et al. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors[J]. Nature Photonics, 1, 343-348(2007).

    [84] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018).

    [85] Desiatov B, Lončar M. Silicon photodetector for integrated lithium niobate photonics[J]. Applied Physics Letters, 115, 121108(2019).

    [86] Kong Y F, Bo F, Wang W W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, 1806452(2020).

    [87] Ahr F, Jolly S W, Matlis N H et al. Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate[J]. Optics Letters, 42, 2118-2121(2017).

    [88] Carbajo S, Schulte J, Wu X J et al. Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate[J]. Optics Letters, 40, 5762-5765(2015).

    [89] Jolly S W, Matlis N H, Ahr F et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation[J]. Nature Communications, 10, 2591(2019).

    [90] Lemery F, Vinatier T, Mayet F et al. Highly scalable multicycle THz production with a homemade periodically poled macrocrystal[J]. Communications Physics, 3, 150(2020).

    [91] Hamazaki J, Ogawa Y, Kishimoto T et al. Conversion efficiency improvement of terahertz wave generation laterally emitted by a ridge-type periodically poled lithium niobate[J]. Optics Express, 30, 11472-11478(2022).

    [92] Pastor-Graells J, Cortés L R, Fernández-Ruiz M R et al. SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts[J]. Optics Letters, 42, 1728-1731(2017).

    [93] Shen Y C, Upadhya P C, Linfield E H et al. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters[J]. Applied Physics Letters, 83, 3117-3119(2003).

    [94] Hafez H A, Kovalev S, Deinert J C et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions[J]. Nature, 561, 507-511(2018).

    [95] Tu Y Y, Sun X, Wu H Z et al. Enhanced terahertz generation from the lithium niobate metasurface[J]. Frontiers in Physics, 10, 883703(2022).

    Tools

    Get Citation

    Copy Citation Text

    Wenbin Han, Dehui Sun, Meng Wang, Chenzhe Li, Shouting Liu, Hong Liu. High‑Energy, Strong‑Field Terahertz Source and Lithium Niobate Crystal[J]. Chinese Journal of Lasers, 2023, 50(17): 1714003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: May. 4, 2023

    Accepted: Jul. 12, 2023

    Published Online: Aug. 28, 2023

    The Author Email: Dehui Sun (ifc_sundh@ujn.edu.cn), Hong Liu (hongliu@sdu.edu.cn)

    DOI:10.3788/CJL230780

    Topics