Chinese Optics Letters, Volume. 20, Issue 8, 081202(2022)
Zero field optically pumped magnetometer with independent dual-mode operation
[1] V. Shah, M. V. Romalis. Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A, 80, 013416(2009).
[2] I. K. Kominis, T. W. Kornack, J. C. Allred, M. V. Romalis. A subfemtotesla multichannel atomic magnetometer. Nature, 422, 596(2003).
[3] E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, M. J. Brookes. Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657(2018).
[4] H. B. Dang, A. C. Maloof, M. V. Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett., 97, 151110(2010).
[5] H. H. Nelson, J. R. McDonald. Multisensor towed array detection system for UXO detection. IEEE Trans. Geosci. Remote Sens., 39, 1139(2001).
[6] D. Sheng, S. Li, N. Dural, M. V. Romalis. Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett., 110, 160802(2013).
[7] H. Xia, A. Ben-Amar Baranga, D. Hoffman, M. V. Romalis. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett., 89, 211104(2006).
[8] A. P. Colombo, T. R. Carter, A. Borna, Y. Jau, C. N. Johnson, A. L. Dagel, P. D. Schwindt. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt. Express, 24, 15403(2016).
[9] Y. Yan, G. Liu, H. Lin, K. Yin, J. Lu. VCSEL frequency stabilization for optically pumped magnetometers. Chin. Opt. Lett., 19, 121407(2021).
[10] O. Alem, T. H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, S. Knappe. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol., 60, 4797(2015).
[11] S. P. Krzyzewski, A. R. Perry, V. Gerginov, S. Knappe. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer. J. Appl. Phys., 126, 044504(2019).
[12] W. Happer, H. Tang. Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett., 31, 273(1973).
[13] I. M. Savukov, M. V. Romalis. Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields. Phys. Rev. A, 71, 023405(2005).
[14] J. Tang, Y. Zhai, L. Cao, Y. Zhang, L. Li, B. Zhao, B. Zhou, B. Han, G. Liu. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Opt. Express, 29, 15641(2021).
[15] H. B. Dang, A. C. Maloof, M. V. Romalis. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett., 97, 151110(2010).
[16] A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, D. D. Schwindt. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt. Express, 24, 15403(2016).
[17] R. Wyllie, M. Kauer, R. T. Wakai, T. G. Walker. Optical magnetometer array for fetal magnetocardiography. Opt. Lett., 37, 2247(2012).
[18] D. Y. Ma, J. X. Lu, X. J. Fang, K. Yang, K. Wang, N. Zhang, B. C. Han, M. Ding. Parameter modeling analysis of a cylindrical ferrite magnetic shield to reduce magnetic noise. IEEE Trans. Ind. Electron., 69, 991(2021).
[19] J. Osborne, J. Orton, O. Alem. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism. Proc. SPIE, 10548, 105481G(2018).
[20] V. P. Gerginov, L. Li, M. Gerginov, S. Krzyzewski, S. Knappe. Microfabricated magnetometers for imaging and communication. Proc. SPIE, 11296, 112963C(2020).
[21] O. Alem, T. Sander, R. Mhaskar, J. Leblanc, H. Eswaran, U. Steinhoff. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol., 60, 4797(2015).
[22] O. Alem, R. Mhaskar, J. Ricardo, D. Sheng, S. Knappe. Magnetic field imaging with microfabricated optically-pumped magnetometers. Opt. Express, 25, 7849(2017).
[23] S. J. Seltzer. Developments in alkali-metal atomic magnetometry(2008).
[24] J. Lu, Z. Qian, J. Fang. A fast determination method for transverse relaxation of spin-exchange-relaxation-free magnetometer. Rev. Sci. Instrum., 86, 043104(2015).
[25] M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, M. V. Romalis. Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A, 77, 033408(2008).
[26] T. M. Tierney, N. Holmes, S. Mellor, J. D. López, G. R. Barnes. Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598(2019).
[27] R. E. Slocum, B. I. Marton. Measurement of weak magnetic fields using zero-field parametric resonance in optically pumped He4. IEEE Trans. Magn., 9, 221(1973).
[28] C. Cohen-Tannoudji, J. Dupont-Roc. Experimental study of Zeeman light shifts in weak magnetic fields. Phys. Rev. A, 5, 968(1972).
[29] S. K. Lee, M. V. Romalis. Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry. J. Appl. Phys., 103, 084904(2008).
[30] J. Tang, Y. Zhai, B. Zhou, B. Han, G. Liu. Dual-axis closed loop of a single-beam atomic magnetometer: toward high bandwidth and high sensitivity. IEEE Trans. Instrum. Meas., 70, 1504808(2021).
Get Citation
Copy Citation Text
Shaowen Zhang, Jixi Lu, Ying Zhou, Fei Lu, Kaifeng Yin, Di Zhan, Yueyang Zhai, Mao Ye, "Zero field optically pumped magnetometer with independent dual-mode operation," Chin. Opt. Lett. 20, 081202 (2022)
Category: Instrumentation, Measurement, and Optical Sensing
Received: Dec. 6, 2021
Accepted: May. 7, 2022
Published Online: May. 27, 2022
The Author Email: Jixi Lu (lujixi@buaa.edu.cn), Ying Zhou (zhouyingphd@163.com)