Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 816(2025)
Impact of Calcination Condition on Phase Composition and Carbonation Reactivity of Wollastonite
[1] [1] BOLTE G, ZAJAC M, SKOCEK J, et al. Development of composite cements characterized by low environmental footprint[J]. J Clean Prod, 2019, 226: 503–514.
[2] [2] CELIK K, JACKSON M D, MANCIO M, et al. High-volume natural volcanic pozzolan and limestone powder as partial replacements for Portland cement in self-compacting and sustainable concrete[J]. Cem Concr Compos, 2014, 45: 136–147.
[3] [3] LIU S H, SHEN P L, XUAN D X, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cem Concr Compos, 2021, 118: 103988.
[4] [4] LIU Z C, LV C Y, WANG F Z, et al. Recent advances in carbonatable binders[J]. Cem Concr Res, 2023, 173: 107286.
[5] [5] PAN C Y, SONG Y F, WANG J Z, et al. Unlocking the role of recycled aggregates in the performance enhancement and CO2 capture of reactive magnesia cement formulations[J]. Cem Concr Res, 2023, 168: 107148.
[6] [6] DUNG N T, LESIMPLE A, HAY R, et al. Formation of carbonate phases and their effect on the performance of reactive MgO cement formulations[J]. Cem Concr Res, 2019, 125: 105894.
[7] [7] LI W Z, CAO M L, WANG D, et al. Improving the hydration activity and volume stability of the RO phases in steel slag by combining alkali and wet carbonation treatments[J]. Cem Concr Res, 2023, 172: 107236.
[9] [9] LV C Y, LIU Z C, WANG F Z, et al. Understanding the role of different phases in -C2S based carbonatable clinkers[J]. Cem Concr Res, 2024, 185: 107642.
[10] [10] LI X, FANG Y L, XU X G, et al. Study on photocatalytic performance of carbonated coating supported TiO2@SiO2[J]. Constr Build Mater, 2024, 411: 134574.
[11] [11] HUANG H H, REN X, LIU Z C, et al. Development of low-carbon and cost-effective ultra-high performance concrete using carbonated recycled fine aggregate[J]. Constr Build Mater, 2023, 399: 132575.
[12] [12] ZHONG K N, HUANG S, LIU Z C, et al. CO2 absorbing 3D printable mixtures for magnesium slag valorization[J]. Constr Build Mater, 2024, 436: 136894.
[14] [14] JIANG T, CUI K, CHANG J. Development of low-carbon cement: Carbonation of compounded C2S by -C2S and -C2S[J]. Cem Concr Compos, 2023, 139: 105071.
[17] [17] RONG P J, LIU S H, LI R Q, et al. Enhancing the carbonation of -C2S through MgCl2 incorporation[J]. Constr Build Mater, 2023, 409: 134138.
[18] [18] LI G S, LIU S H, HU X, et al. Tailoring self-pulverized low-calcium clinker for CO2 sequestration[J]. Constr Build Mater, 2023, 409: 134051.
[19] [19] LIU J H, RUAN H, LU B, et al. A new enhanced carbonation curing method using monoethanolamine (MEA) solution: Their effects on hydration and microstructure of cement-based materials[J]. Constr Build Mater, 2023, 396: 132172.
[20] [20] KHAN R I, SIDDIQUE S, ASHRAF W. Effects of magnesia in semi-hydraulic and non-hydraulic calcium silicate binders during carbonation curing[J]. Constr Build Mater, 2022, 338: 127628.
[21] [21] ASHRAF W, OLEK J, TIAN N N. Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus[J]. Cem Concr Compos, 2016, 72: 284–298.
[22] [22] PAE J, KIM W K, MOON J. Mineral carbonation performance of wollastonite-blended cementitious composites throughin situCO2 mixing[J]. Constr Build Mater, 2024, 438: 137160.
[23] [23] ZHANG L, SUN L Y, GUAN X M, et al. Insight into carbonation reactivity of polycrystalline CS by DFT simulation[J]. Constr Build Mater, 2023, 401: 133008.
[24] [24] YADAV S, MEHRA A. Mathematical modelling and experimental study of carbonation of wollastonite in the aqueous media[J]. J CO2 Util, 2019, 31: 181–191.
[25] [25] LIU S H, ZHANG L, XUAN D X, et al. Enhanced carbonation reactivity of wollastonite by rapid cooling process: Towards an ultra-low calcium CO2 sequestration binder[J]. Constr Build Mater, 2021, 299: 124336.
[26] [26] ZHANG C, LIU S H, LUO S Q, et al. Effects of sodium doping on carbonation behavior of -CS[J]. Cem Concr Compos, 2022, 131: 104607.
[27] [27] PLATTENBERGER D A, LING F T, TAO Z Y, et al. Calcium silicate crystal structure impacts reactivity with CO2 and precipitate chemistry[J]. Environ Sci Technol Lett, 2018, 5(9): 558–563.
[28] [28] YANG H X, PREWITT C T. Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3)[J]. Am Mineral, 1999, 84(11–12): 1902–1905.
[29] [29] OHASHI Y. Polysynthetically-twinned structures of enstatite and wollastonite[J]. Phys Chem Miner, 1984, 10(5): 217–229.
[30] [30] BUERGER M J, PREWITT C T. The crystal structures of wollastonite and pectolite[J]. Proc Natl Acad Sci USA, 1961, 47(12): 1884–1888.
[31] [31] KSHETRI Y K, CHAUDHARY B, DHAKAL D R, et al. Ultraviolet and visible upconversion in Yb/Er-CaSiO3 -wollastonite phosphors[J]. Ceram Int, 2023, 49(5): 7489–7499.
[32] [32] ZHENG Y, WANG C, ZHOU S, et al. The self-gelation properties of calcined wollastonite powder[J]. Constr Build Mater, 2021, 290: 123061.
[33] [33] BOUATROUS M, BOUZERARA F, BHAKTA A K, et al. A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations[J]. Ceram Int, 2020, 46(8): 12618–12625.
[34] [34] ROKITA M, MOZGAWA W, ADAMCZYK A. Transformation of silicate gels during heat treatment in air and in argon–spectroscopic studies[J]. J Mol Struct, 2014, 1070: 125–130.
[35] [35] SITARZ M, HANDKE M, MOZGAWA W. Calculations of silicooxygen ring vibration frequencies[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 1999, 55(14): 2831–2837.
[36] [36] PALUSZKIEWICZ C, BLAEWICZ M, PODPORSKA J, et al. Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies[J]. Vib Spectrosc, 2008, 48(2): 263–268.
[37] [37] HANSEN M R, JAKOBSEN H J, SKIBSTED J. 29Si chemical shift anisotropies in calcium silicates from high-field 29Si MAS NMR spectroscopy[J]. Inorg Chem, 2003, 42(7): 2368–2377.
[38] [38] SHEN Y Y, JIANG L, SHEN P L, et al. Development of photocatalytic carbonation coating for concrete: Enhancement of air quality and sequestration of CO2[J]. Cem Concr Compos, 2024, 145: 105308.
[39] [39] CHENG L L, CHEN Y X, LIU T, et al. Understanding the CaCO3 phase transition of carbonated wollastonite composites caused by sodium tripolyphosphate: From amorphous to crystalline[J]. Cem Concr Compos, 2024, 148: 105477.
[40] [40] SHEN Y Y, LIU S H, WANG Y L, et al. Hydration-hardening properties of low-clinker composite cement incorporating carbonated waste sintering red mud and metakaolin[J]. Constr Build Mater, 2022, 354: 129171.
[41] [41] LYU H X, HAO L C, ZHANG S P, et al. High-performance belite rich eco-cement synthesized from solid wastes: Raw feed design, sintering temperature optimization, and property analysis[J]. Resour Conserv Recycl, 2023, 199: 107211.
[42] [42] MO L W, PANESAR D K. Accelerated carbonation–A potential approach to sequester CO2 in cement paste containing slag and reactive MgO[J]. Cem Concr Compos, 2013, 43: 69–77.
[45] [45] ROSTAMI V, SHAO Y X, BOYD A J, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cem Concr Res, 2012, 42(1): 186–193.
Get Citation
Copy Citation Text
LIU Songhui, LI Donglin, ZHANG Xinyu, LI Genshen, ZHU Jianping, GUAN Xuemao. Impact of Calcination Condition on Phase Composition and Carbonation Reactivity of Wollastonite[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 816
Special Issue:
Received: Sep. 30, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: LI Genshen (ligenshen@hpu.edu.cn)