OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 20, Issue 4, 19(2022)
Development and Application of Plasmonic Second-Harmonic Generation
[1] [1] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Phys. Rev. Lett., 1961, 7(4): 118-119.
[5] [5] Panoiu N C, Sha W E I, Lei D Y, et al. Nonlinear optics in plasmonic nanostructures[J]. J. Opt., 2018, 20(8): 083001.
[9] [9] Ciracì C, Poutrina E, Scalora M, et al. Second-harmonic generation in metallic nanoparticles: Clarification of the role of the surface[J]. Phys. Rev. B, 2012, 86(11): 115451.
[10] [10] Butet J, Brevet P F, Martin O J F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced applications[J]. ACS Nano, 2015, 9(11): 10545-10562.
[11] [11] Krause D, Teplin C W, Rogers C T. Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum[J]. J. Appl. Phys., 2004, 96: 3626.
[12] [12] Yang K Y, Butet J Yan, C Bernasconi, et al. Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures[J]. ACS Photonics, 2017, 4: 1522-1530.
[13] [13] Luce T A, Hubner W, Bennemann K H. Theory for the nonlinear optical response at noble-metal surfaces with nonequilibrium electrons[J]. Z. Phys. B: Condens. Matter, 1997, 102: 223-232.
[14] [14] Schaich W L. Calculations of second-harmonic generation for a jellium metal surface[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61: 10478.
[15] [15] Haus J W, de Ceglia D, Vincenti M A, et al. Nonlinear quantum tunneling effects in nanoplasmonic environments: Two-photon absorption and harmonic generation[J]. J. Opt. Soc. Am. B, 2014, 31: A13-A19.
[16] [16] Simon H J, Mitchell D E, Watson J G. Optical second-harmonic generation with surface plasmons in silver films[J]. Phys. Rev. Lett., 1974, 33: 1531-1534.
[17] [17] Hua X M, Gersten J I. Theory of second-harmonic generation by small metal spheres[J]. Phys. Rev. B: Condens. Matter, 1986, 33(6): 3756.
[18] [18] Vance F W, Lemon B I, Hupp J T. Enormous hyper-rayleigh scattering from nanocrystalline gold particle suspensions[J]. J. Phys. Chem. B, 1998, 102(50): 10091-10093.
[19] [19] Staedler D, Magouroux T, Hadji R, et al. Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility[J]. ACS Nano, 2012, 6(3): 2542-2549.
[20] [20] Kruk K, Kivshar Y. Functional meta-optics and nanophotonics govern by Mie resonances[J]. ACS Photonics, 2012, 4(11): 2638-2649.
[21] [21] Rahmani M, Luk’yanchuk B, Hong M H. Fano resonance in novel plasmonic nanostructures[J]. Laser & Photonics Rev., 2013, 7(3): 329-349.
[22] [22] Zhang S, Li G C, Chen Y, et al. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation[J]. ACS Nano, 2016, 10: 11105-11114.
[23] [23] Liu S D, Leong E S P, Li G C, et al. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation[J]. ACS Nano, 2016, 10: 1442-1453.
[24] [24] Thyagarajan K, Butet J, Martin O J F. Augmenting second harmonic generation using Fano resonances in plasmonic systems[J]. Nano Lett., 2013, 13: 1847-1851.
[25] [25] Monticone F, Alù A. The quest for optical magnetism: From split-ring resonators to plasmonic nanoparticles and nanoclusters[J]. J. Mater. Chem. C, 2014, 2: 9059-9072.
[26] [26] Yang D J, Im S J, Pan G M, et al. Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings[J]. Nanoscale, 2017, 9(18): 6068-6075.
[27] [27] Guo K, Qian C, Zhang Y L, et al. Second harmonic generation manipulation enabled by electromagnetic coupling in bianisotropic metamolecules[J]. Adv. Opt. Mater., 2018, 6(7): 1701154.
[28] [28] Kolmychek I A, Bykov A Y, Mamonov E A, et al. Second-harmonic generation interferometry in magnetic dipole nanostructures[J]. Opt. Lett., 2015, 40(16): 3758-3761.
[29] [29] Ding S J, Zhang H, Yang D J, et al. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups[J]. Nano Lett., 2019, 19: 2005-2011.
[30] [30] Klein M W, Enkrich C, Wegener M, et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 2006, 313(5786): 502-504.
[31] [31] Celebrano M, Wu X, Baselli M, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation[J]. Nat. Nanotechnol., 2015, 10(5): 412-417.
[32] [32] Thyagarajan K, Rivier S, Lovera A, et al. Enhanced second-harmonic generation from double resonant plasmonic antennae[J]. Opt. Express, 2012, 20(12): 12860-12865.
[33] [33] Michaeli L, Keren-Zur S, Avayu O, et al. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays[J]. Phys. Rev. Lett. , 2017, 118: 243904.
[34] [34] Czaplicki R, Kiviniemi A, Laukkanen J, et al. Surface lattice resonances in second-harmonic generation from metasurfaces[J]. Opt. Lett. , 2016, 41(12): 2684-2687.
[35] [35] Han A, Dineen C, Babicheva V E, et al. Second harmonic generation in metasurfaces with multipole resonant coupling[J]. Nanophotonics, 2020, 9(11): 3545-3556.
[36] [36] Zhai W C, Qiao T Z, Cai D J, et al. Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects[J]. Opt. Express, 2016, 24(24): 27858-27869.
[37] [37] Guo K, Zhou K, Liu W, et al. Second harmonic generation enhancement from plasmonic toroidal resonance in core-shell nanodisk[J]. IEEE Photonics J., 2021, 13(3): 4800509.
[38] [38] Mobini E, Alaee R, Boyd R W, et al. Giant asymmetric second-harmonic generation in bianisotropic metasurfaces based on bound states in the contiuum[J]. ACS Photonics, 2021, 8(11): 3234-3240.
[39] [39] Xiao F, Shang W, Zhu W, et al. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 2018, 6(3): 157-161.
[40] [40] Shang W, Xiao F, Han L, et al. Enhanced second harmonic generation from a plasmonic Fano structure subjected to an azimuthally polarized light beam[J]. J. Phys.: Condens. Matter, 2018, 30: 064004.
[41] [41] Wen Y, Zhou J. Artificial nonlinearity generated from electromagnetic coupling metamolecule[J]. Phys. Rev. Lett. , 2017, 118: 167401.
[42] [42] Guo Z Y, Li Z X, Guo K. The enhanced second-harmonic generation based on magnetic-Lorentz-force effect[J]. Annalen Der Physik, 2019, 531(4): 1800470.
[43] [43] Yang G, Li Z, Kang Q, et al. Enhanced magnetic Lorentz force second harmonic generation originating from a double-resonances plasmonic metasurface[J]. J. Phys. D: Appl. Phys., 2021, 54: 175110.
[44] [44] Yao J, Cai G, Liu N, et al. Enhancing artificial sum frequency generation from graphene-gold metamolecules[J]. Opt. Lett., 2018, 43(13): 3160-3163.
[45] [45] Rahimi E, Xu H T, Choi B C, et al. Lorentz nanoplasmonics for nonlinear generation[J]. Nano Lett., 2018, 18(12): 8030-8034.
[46] [46] Liu W, Kivshar Y S. Generalized Kerker effects in nanophotonics and meta-optics[J]. Opt. Express, 2018, 26(10): 13085-13105.
[47] [47] Dadap J I, Shan J, Eisenthal K B, et al. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material[J]. Phys. Rev. Lett., 1999, 83(20): 4045-4048.
[48] [48] Butet J, Bernasconi G D, Petit M, et al. Revealing a mode interplay that controls second-harmonic radiation in gold nanoantennas[J]. ACS Photonics, 2017, 4: 2923-2929.
[49] [49] Guo K, Zhang Y L, Qian C, et al. Electric dipole-quadrupole hybridization induced enhancement of second-harmonic generation in T-shaped plasmonic heterodimers[J]. Opt. Express, 2018, 26(9): 11984-11993.
[50] [50] Zhang Y, Grady N K, Ayala-Orozco C, et al. Three-dimensional nanostructures as highly efficient generators of second harmonic light[J]. Nano Lett., 2011, 11: 5519-5523.
[51] [51] Xiong X Y Z, Jiang L J, Sha W E I, et al. Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna[J]. Phys. Rev. A, 2016, 94: 053825.
[52] [52] Inchaussandague M E, Gigli M L, O’Donnell K A, et al. Second-harmonic generation from plasmon polariton excitation on silver diffraction gratings: Comparisons of theory and experiment[J]. J. Opt. Soc. Am. B, 2017, 34(1): 27-37.
[53] [53] Che Y H, Wang X T, Song Q H, et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms[J]. Nanophotonics, 2020, 9(15): 4407-4431.
[54] [54] Walsh G F, Negro L D. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays[J]. Nano Lett., 2013, 13(7): 3111-3117.
[55] [55] Aouani H, Navarro-Cia M, Rahmani M, et al. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light[J]. Nano Lett., 2012, 12(9): 4997-5002.
[56] [56] Habibullah Y B, Iwata K, Ishihara T. Second-harmonic generation from complementary Au metasurfaces with triangular resonators[J]. J. Opt. Soc. Am. B, 2019, 36(4): 1166-1175.
[57] [57] Cai W, Vasudev A P, Brongersma M L. Electrically controlled nonlinear generation of light with plasmonics[J]. Science, 2011, 333(6050): 1720-1723.
[58] [58] Lan S, Rodrigues S, Cui Y, et al. Electrically tunable harmonic generation of light from plasmonic structures in electrolytes[J]. Nano Lett., 2016, 16(8): 5074-5079.
[59] [59] Sun Y H, Jiang L, Zhong L B, et al. Towards active plasmonic response devices[J]. Nano Research, 2015, 8(2): 406-417.
[60] [60] Liu Z B, Zhang X L, Yan X Q, et al. Nonlinear optical properties of graphene-based materials[J]. Chinese Science Bulletin, 2012, 57(23): 2971-2982.
[61] [61] Yue F Y, Piccoli R, Shalaginov M Y, et al. Nonlinear mid-infrared metasurface based on a phase-change material[J]. Laser & Photonics Rev., 2021, 15(3): 2000373.
[62] [62] Kundys D, Duppen B V, Marchall O P, et al. Nonlinear light mixing by graphene plasmons[J]. Nano Lett. , 2018, 18(1): 282-287.
[63] [63] Calafell I A, Rozema L A, Iranzo D A, et al. Giant enhancement of third-harmonic generation in graphene-metal heterostructures[J]. Nat. Nanotechnol., 2021, 16: 318-324.
[64] [64] Hafez H A, Kovalev S, Tielrooij K J, et al. Terahertz nonlinear optics of graphene: From saturable absorption to high-harmonics generation[J]. Adv. Opt. Mater., 2019, 8(3): 1900771.
[65] [65] Cox J D, de Abajo F J G. Nonlinear graphene nanoplasmonics[J]. Acc. Chem. Res., 2019, 52(9): 2536-2547.
[66] [66] Wang L, Cai W, Zhang X, et al. Surface plasmons at the interface between graphene and Kerr-type nonlinear media[J]. Opt. Lett., 2012, 37(13): 2730-2732.
[67] [67] Xiao F, Zhu W, Shang W, et al. Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure[J]. Opt. Express, 2015, 23(3): 3236-3244.
[68] [68] Li G, Semenenko V, Perebeinos V, et al. Multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range[J]. ACS Photonics, 2019, 6(12): 3180-3185.
[69] [69] Fan Y, Shen N H, Zhang F, et al. Photoexicited graphene metasurfaces: Significantly enhanced and tunable magnetic resonances[J]. ACS Photonics, 2018, 5(4): 1612-1618.
[70] [70] Ding F, Yang Y, Bozhevolnyi S I. Dynamic metasurfaces using phase-change chalcogenides[J]. Adv. Opt. Mater., 2019, 7(14): 1801709.
[71] [71] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nat. Photonic, 2017, 11: 465-476.
[72] [72] Lee B S, Abelson J R, Bishop S G, et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases[J]. J. Appl. Phys., 2005, 97: 093509.
[73] [73] Liu H L, Zhang Z, Shang Z, et al. Dynamically manipulating third-harmonic generation of phase change material with gap-plasmon resonators[J]. Opt. Lett., 2019, 44(20): 5053-5056.
[74] [74] Cao T, Liu K, Tang Y T, et al. A High-Index Ge2Sb2Te5-Based Fabry-Perot Cavity and Its Application for Third-Harmonic Generation[J]. Laser & Photonics Rev., 2019, 13(7): 1900063.
[75] [75] Li Y, Zhang X C, Tang Y T, et al. Ge2Sb2Te5-based nanocavity metasurface for enhancement of third harmonic generation[J]. N. J. Phys., 2021, 23(11): 115009.
[76] [76] Guo K, Zhou K Y, Guo Z. Tunable second harmonic generation from bianisotropic plasmonic metamolecule via utilizing phase change materials[J]. J. Appl. Phys., 2020, 128: 133104.
[77] [77] Bouhelier A, Beversluis M, Hartschuh A, et al. Near-field second-harmonic generation induced by local field enhancement[J]. Phys. Rev. Lett., 2003, 90: 013903.
[78] [78] Keren-Zur S, Avayu O, Michaeli L, et al. Nonlinear beam shaping with plasmonic metasurfaces[J]. ACS Photonics, 2016, 3(1): 117-123.
[79] [79] Senapati D, Singh A K, Khan S A, et al. Probing real time gold nanostar formation process using two-photon scattering spectroscopy[J]. Chem. Phys. Lett., 2011, 504: 46-51.
[80] [80] Singh A K, Senapati D, Neely A, et al. Nonlinear optical properties of triangular silver nanomaterials[J]. Chem. Phys. Lett. , 2009, 481: 94-98.
[81] [81] Xu T, Jiao X, Zhang G P, et al. Second-harmonic emission from sub-wavelength apertures: Effects of aperture smmetry and lattice arrangement[J]. Opt. Express, 2007, 15(21): 13894-13906.
[82] [82] Canfield B K, Husu H, Laukkanen J, et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers[J]. Nano Lett., 2007, 7(5): 1251-1255.
[83] [83] Husu H, Siikanen R, M kitalo J, et al. Metamaterials with tailored nonlinear optical response[J]. Nano Lett., 2012, 12(2): 673-677.
[84] [84] Mamonov E A, Kolmychek I A, Vandendriessche S, et al. Anisotropy versus circular dichroism in second harmonic generation from fourfold symmetric arrays of G-shaped nanostructures[J]. Phys. Rev. B, 2014, 89: 121113(R).
[85] [85] Huttunen M J, Godofredo B, Manuel D, et al. Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers[J]. Opt. Mater. Express, 2011, 1(1): 46-56.
[86] [86] Valev V K, Clercq B D, Zheng X, et al. The role of chiral local field enhancements below the resolution limit of second harmonic generation microscopy[J]. Opt. Express, 2012, 20(1): 256-264.
[87] [87] Bertolotti M, Belardini A, Benedetti A, et al. Second harmonic circular dichroism by self-assembled metasurfaces[J]. J. Opt. Soc. Am. B, 2015, 32(7): 1287-1293.
[88] [88] Kolkowski R, Petti L, Rippa M, et al. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale[J]. ACS Photonics, 2015, 2(7): 899-906.
[89] [89] Van Nieuwstadt, J A H, Sandtke M, et al. Strong modification of the nonlinear optical response of metallic subwavelength hole arrays[J]. Phys. Rev. Lett., 2006, 97: 146102.
[90] [90] Butet J, Dutta-Gupta S, Martin O J F. Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties[J]. Phys. Rev. B, 2014, 89: 245449.
[91] [91] Benedetti A, Centini M, Bertolotti M, et al. Second harmonic generation from 3D nanoantennas: On the surface and bulk contributions by far-field pattern analysis[J]. Opt. Express, 2011, 19(27): 26752-26767.
[94] [94] Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions[J]. Nano Lett., 2001, 1(4): 165-167.
[95] [95] Sing A K, Senapati D, Wang S, et al. Gold nanorod based selective identification of escherichia coli bacteria using two-photon Rayleigh sttering spectroscopy[J]. ACS Nano, 2009, 3(7): 906-1912.
[96] [96] Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of Alzheimer’s dsease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle[J]. ACS Nano, 2009, 3(9): 2834-2840.
[97] [97] Lu W, Arumugan S R, Senapati D, et al. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay[J]. ACS Nano, 2010, 4(3): 1739-1749.
[98] [98] Cao Y C, Jin R, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297(5586): 1536-1540.
[99] [99] Darbha G K, Ray A, Ray P C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish[J]. ACS Nano, 2007, 1(3): 208-214.
[100] [100] Jena B K, Raj C R. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper[J]. Anal. Chem., 2008, 80(13): 4836-4844.
[101] [101] Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy[J]. Chem. Socs. Rev., 2014, 43(4): 1248-1262.
[102] [102] Drachev V P, Khaliullin E N, Kim W, et al. Quantum size effect in two-photon excited luminescence from silver nanoparticles[J]. Phys. Rev. B, 2004, 69: 035318.
[103] [103] Beversluis M R, Bouhelier A, Novotny L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions[J]. Phys. Rev. B, 2003, 68: 115433.
[104] [104] Horneber A, Braun K, Rogalski J, et al. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution[J]. Phys. Chem. Chem. Phys., 2015, 17: 21288-21293.
[105] [105] Chen B, Estrada L C, Hellriegel C, et al. Nanometer-scale optical imaging of collagen fibers using gold nanoparticles[J]. Bio. Opt. Express, 2011, 2(3): 511-519.
[106] [106] Talley C E, Jackson J B, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates[J]. Nano Lett., 2005, 5(8): 1569-1574.
Get Citation
Copy Citation Text
GUO Kai, WANG Chao, GUO Zhong-yi. Development and Application of Plasmonic Second-Harmonic Generation[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2022, 20(4): 19
Category:
Received: Dec. 27, 2021
Accepted: --
Published Online: Oct. 29, 2022
The Author Email:
CSTR:32186.14.