NUCLEAR TECHNIQUES, Volume. 48, Issue 5, 050005(2025)

Machine learning simulates collective flow and nuclear stopping in heavy-ion collisions at intermediate energies

Guojun WEI1,2, Yongjia WANG2、*, Qingfeng LI2, and Fuhu LIU1
Author Affiliations
  • 1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
  • 2School of Science, Huzhou University, Huzhou 313000, China
  • show less
    Figures & Tables(6)
    Comparison between predicted values of the Gaussian process emulator and calculated values of the transport model (color online)
    The Pearson coefficient of the emulator data and the model data
    Comparison of emulated and computed for all observables considered(a) Multi-task neural network, (b) Random forest
    • Table 1. The parameters of the nuclear matter properties

      View table
      View in Article

      Table 1. The parameters of the nuclear matter properties

      参数Parameters先验分布Prior
      K0[180, 380]
      m*[0.6, 0.95]
      F[0.6, 1.0]
    • Table 2. Selection of observables

      View table
      View in Article

      Table 2. Selection of observables

      观测量Observable约化碰撞参数Reduced impact parameter b0横向动量Transverse 4-velocities ut0
      Feature 1v11b0<0.25ut0>0.8
      Feature 20.25<b0<0.45
      Feature 3v20b0<0.25
      Feature 40.25<b0<0.45
      Feature 5vartlb0<0.15None
    • Table 3. Transport model emulator calibration results

      View table
      View in Article

      Table 3. Transport model emulator calibration results

      机器学习Machine learning训练集Training set R2测试集Test set R2
      高斯过程Gaussian process0.950.95
      多任务神经网络Multi-task neural network0.930.93
      随机森林Random forest0.980.85
    Tools

    Get Citation

    Copy Citation Text

    Guojun WEI, Yongjia WANG, Qingfeng LI, Fuhu LIU. Machine learning simulates collective flow and nuclear stopping in heavy-ion collisions at intermediate energies[J]. NUCLEAR TECHNIQUES, 2025, 48(5): 050005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Topics on Applications of Machine Learning in Nuclear Physics and Nuclear Data

    Received: Mar. 7, 2025

    Accepted: --

    Published Online: Jun. 26, 2025

    The Author Email: Yongjia WANG (王永佳)

    DOI:10.11889/j.0253-3219.2025.hjs.48.250097

    Topics