Acta Optica Sinica, Volume. 41, Issue 20, 2016002(2021)

Enhancement of Reverse Saturable Absorption of Rhenium Disulfide/Graphene Heterojunctions by Interlayer Charge Transfer

Xiang Xu1, Ying Zhang1, Zenghui Liu1, Xing Bai1, Jun Wang1, Qing Yan1, and Dengxin Hua1、*
Author Affiliations
  • 1School of Mechanical and Precision Instrument Engineering, Xi′an University of Technology, Xi′an, Shaanxi 710048, China
  • 1School of Mechanical and Precision Instrument Engineering, Xian University of Technology, Xian, Shaanxi 710048, China
  • show less
    References(44)

    [1] Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J et al. 2D materials: to graphene and beyond[J]. Nanoscale, 3, 20-30(2011).

    [2] Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 567, 323-333(2019).

    [3] Xu X, Guo Y H, Zhao Q Y et al. Green and efficient exfoliation of ReS2 and its photoelectric response based on electrophoretic deposited photoelectrodes[J]. Materials & Design, 159, 11-19(2018).

    [4] Lu C H, Ma J Y, Si K Y et al. Band alignment of WS2/MoS2 photoanodes with efficient photoelectric responses based on mixed van der Waals heterostructures[J]. Physica Status Solidi (a), 216, 1900544(2019).

    [5] Long H, Hu J W, Wu F G et al. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber[J]. Acta Physica Sinica, 69, 188102(2020).

    [6] Novoselov K S, Mishchenko A, Carvalho A et al. 353(6298): aac9439[J]. van der Waals heterostructures. Science(2016).

    [7] Zhang Z, Lin P, Liao Q et al. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics[J]. Advanced Materials, 31, e1806411(2019).

    [10] Withers F, del Pozo-Zamudio O, Mishchenko A et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nature Materials, 14, 301-306(2015).

    [11] Nakamura S, Senoh M, Mukai T. P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes[J]. Japanese Journal of Applied Physics, 32, L8-L11(1993).

    [12] Dean C R, Young A F, Meric I et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 5, 722-726(2010).

    [14] Novoselov K S, Jiang D, Schedin F et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of USA, 102, 10451-10453(2005).

    [15] Lu C H, Quan C J, Si K Y et al. Charge transfer in graphene/WS2 enhancing the saturable absorption in mixed heterostructure films[J]. Applied Surface Science, 479, 1161-1168(2019).

    [16] Quan C J, Lu C H, He C et al. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance[J]. Advanced Materials Interfaces, 6, 1801733(2019).

    [17] Ma J Y, Lu C H, Liu C J et al. Electrophoretic deposition of ZnSnO3/MoS2 heterojunction photoanode with improved photoelectric response by low recombination rate[J]. Journal of Alloys and Compounds, 810, 151845(2019).

    [18] Tiwari S K, Sahoo S, Wang N N et al. Graphene research and their outputs: status and prospect[J]. Journal of Science: Advanced Materials and Devices, 5, 10-29(2020).

    [19] Weitz R T, Yacoby A. Nanomaterials: graphene rests easy[J]. Nature Nanotechnology, 5, 699-700(2010).

    [22] Jin Q, Dong H M, Han K et al. Ultrafast dynamic optical properties of graphene[J]. Acta Physica Sinica, 64, 325-331(2015).

    [24] Li X L, Xu J L, Wu Y Z et al. Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser[J]. Optics Express, 19, 9950-9955(2011).

    [25] Xu X, He M M, Quan C J et al. Saturable absorption properties of ReS2 films and mode-locking application based on double-covered ReS2 micro fiber[J]. Journal of Lightwave Technology, 36, 5130-5136(2018).

    [27] Tongay S, Sahin H, Ko C et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 5, 3252(2014).

    [28] Zhang Q, Wang W, Zhang J et al. Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction[J]. Advanced Materials, 30, e1707123(2018).

    [29] Lu C H, Xuan H W, Zhou Y X et al. Saturable and reverse saturable absorption in molybdenum disulfide dispersion and film by defect engineering[J]. Photonics Research, 8, 1512-1521(2020).

    [30] Lu C H, Yang D, Ma J Y et al. Effect of surface oxidation on nonlinear optical absorption in WS2 nanosheets[J]. Applied Surface Science, 532, 147409(2020).

    [31] Quan C J, He M M, He C et al. Transition from saturable absorption to reverse saturable absorption in MoTe2 nano-films with thickness and pump intensity[J]. Applied Surface Science, 457, 115-120(2018).

    [32] Ganeev R A, Ryasnyansky A I, Ishizawa N et al. Two- and three-photon absorption in CS2[J]. Optics Communications, 231, 431-436(2004).

    [33] Jing Q H, Zhang H, Huang H et al. Ultrasonic exfoliated ReS2 nanosheets: fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO2 nanoparticles under sunlight[J]. Nanotechnology, 30, 184001(2019).

    [34] Kim K S, Zhao Y, Jang H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 457, 706-710(2009).

    [35] Hafeez M, Gan L, Li H Q et al. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors[J]. Advanced Functional Materials, 26, 4551-4560(2016).

    [36] Ferrari A C, Meyer J C, Scardaci V et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 97, 187401(2006).

    [37] Sheik-Bahae M, Said A A, Wei T H et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 26, 760-769(1990).

    [38] Wang J, Sheik-Bahae M, Said A A et al. Time-resolved Z-scan measurements of optical nonlinearities[J]. Journal of the Optical Society of America B, 11, 1009-1017(1994).

    [39] Sheik-Bahae M, Said A A, Wei T H et al. Sensitive measurement of optical nonlinearities using a single beam[J]. IEEE Journal of Quantum Electronics, 26, 760-769(1990).

    [40] Chen R Z, Zheng X, Jiang T. Broadband ultrafast nonlinear absorption and ultra-long exciton relaxation time of black phosphorus quantum dots[J]. Optics Express, 25, 7507-7519(2017).

    [41] Wu L F, Wang Y H, Li P L et al. Enhanced nonlinear optical behavior of graphene-CuO nanocomposites investigated by Z-scan technique[J]. Journal of Alloys and Compounds, 777, 759-766(2019).

    [42] Huang P L, Chen W L, Peng T W et al. Investigation of saturable and reverse saturable absorptions for graphene by Z-scan technique[J]. IEEE Photonics Technology Letters, 27, 1791-1794(2015).

    [43] Liu Z W, Gan F, Dong N N et al. Fabrication and nonlinear optical characterization of fluorinated zinc phthalocyanine covalently modified black phosphorus/PMMA films using the nanosecond Z-scan technique[J]. Journal of Materials Chemistry C, 7, 10789-10794(2019).

    [44] Hernandez Y, Nicolosi V, Lotya M et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 3, 563-568(2008).

    Tools

    Get Citation

    Copy Citation Text

    Xiang Xu, Ying Zhang, Zenghui Liu, Xing Bai, Jun Wang, Qing Yan, Dengxin Hua. Enhancement of Reverse Saturable Absorption of Rhenium Disulfide/Graphene Heterojunctions by Interlayer Charge Transfer[J]. Acta Optica Sinica, 2021, 41(20): 2016002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 16, 2021

    Accepted: Jul. 19, 2021

    Published Online: Sep. 30, 2021

    The Author Email: Hua Dengxin (xauthdx@163.com)

    DOI:10.3788/AOS202141.2016002

    Topics