Acta Optica Sinica, Volume. 42, Issue 14, 1429001(2022)

Research on Optical Scattering of Individual Dielectric Particles Controlled by Gold Nano-Gratings

Xinyue Liu, Qian Mai, Jiahao Yan*, and Baojun Li**
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou 511443, Guangdong , China
  • show less
    References(40)

    [1] Jiang W, Hu H T, Deng Q et al. Temperature-dependent dark-field scattering of single plasmonic nanocavity[J]. Nanophotonics, 9, 3347-3356(2020).

    [2] He J T, Wang M J, Zhang J L. Blue-green laser scattering and absorption properties of agglomerated core-shell cyanobacteria particles[J]. Acta Optica Sinica, 41, 1729001(2021).

    [3] Tian X D, Zhou Y D, Thota S et al. Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy[J]. The Journal of Physical Chemistry C, 118, 13801-13808(2014).

    [4] Zhang H Z, Li R S, Gao P F et al. Real-time dark-field light scattering imaging to monitor the coupling reaction with gold nanorods as an optical probe[J]. Nanoscale, 9, 3568-3575(2017).

    [5] Hu M, Novo C, Funston A et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. Journal of Materials Chemistry, 18, 1949-1960(2008).

    [6] Nicoletti O, de la Peña F, Leary R K et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles[J]. Nature, 502, 80-84(2013).

    [7] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 111, 3828-3857(2011).

    [8] Sannomiya T, Dermutz H, Hafner C et al. Electrochemistry on a localized surface plasmon resonance sensor[J]. Langmuir, 26, 7619-7626(2010).

    [9] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 16, 1685-1706(2004).

    [10] Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [11] Mayer K M, Lee S, Liao H W et al. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods[J]. ACS Nano, 2, 687-692(2008).

    [12] Won R. Into the ‘Mie-tronic’ era[J]. Nature Photonics, 13, 585-587(2019).

    [13] Sugimoto H, Okazaki T, Fujii M. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles[J]. Advanced Optical Materials, 8, 2000033(2020).

    [14] Cihan A F, Curto A G, Raza S et al. Silicon Mie resonators for highly directional light emission from monolayer MoS2[J]. Nature Photonics, 12, 284-290(2018).

    [15] Zhao Q, Zhou J, Zhang F L et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 12, 60-69(2009).

    [16] Proust J, Bedu F, Gallas B et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 10, 7761-7767(2016).

    [17] Lee K T, Taghinejad M, Yan J H et al. Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light[J]. ACS Photonics, 6, 2663-2670(2019).

    [18] Holsteen A L, Raza S, Fan P Y et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas[J]. Science, 358, 1407-1410(2017).

    [19] Yan J H, Liu X Y, Mao B J et al. Individual Si nanospheres wrapped in a suspended monolayer WS2 for electromechanically controlled Mie-type nanopixels[J]. Advanced Optical Materials, 9, 2001954(2021).

    [20] Liu X G, Kang J H, Yuan H T et al. Electrical tuning of a quantum plasmonic resonance[J]. Nature Nanotechnology, 12, 866-870(2017).

    [21] Zhong Z H, Qian F, Wang D L et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices[J]. Nano Letters, 3, 343-346(2003).

    [22] Tao L, Chen Z F, Li Z Y et al. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices[J]. InfoMat, 3, 36-60(2021).

    [23] Li J X, Yu P, Zhang S et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 11, 3574(2020).

    [24] Emboras A, Hoessbacher C, Haffner C et al. Electrically controlled plasmonic switches and modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 276-283(2015).

    [25] Buchnev O, Podoliak N, Kaczmarek M et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 3, 674-679(2015).

    [26] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium niobate microresonator[J]. Optics Letters, 44, 1214-1217(2019).

    [27] Worthing P T, Barnes W L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating[J]. Applied Physics Letters, 79, 3035-3037(2001).

    [28] Ye Z C, Zheng J, Sun S et al. Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances[J]. Plasmonics, 8, 555-559(2013).

    [29] Wu Z, Nelson R L, Haus J W et al. Plasmonic electro-optic modulator design using a resonant metal grating[J]. Optics Letters, 33, 551-553(2008).

    [30] Wang Y, Zhang X P. Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings[J]. Nanoscale, 11, 17807-17814(2019).

    [31] Zilio P, Sammito D, Zacco G et al. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Optics Express, 20, A476-A488(2012).

    [32] Iqbal T, Ijaz M, Javaid M et al. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell[J]. Plasmonics, 14, 147-154(2019).

    [33] Wang R, Li T, Shao X M et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Applied Materials & Interfaces, 7, 14471-14476(2015).

    [34] Christ A, Zentgraf T, Kuhl J et al. Optical properties of planar metallic photonic crystal structures: experiment and theory[J]. Physical Review B, 70, 125113(2004).

    [35] Gollmer D A, Lorch C, Schreiber F et al. Enhancing light absorption in organic semiconductor thin films by one-dimensional gold nanowire gratings[J]. Physical Review Materials, 1, 054602(2017).

    [36] Chen Y, Zhou X D, Zhou J et al. Fano-resonance sensing mechanism of sub-wavelength dielectric grating-metal Ag thin film-periodic photonic crystal hybrid structure[J]. Chinese Journal of Lasers, 47, 0413001(2020).

    [37] Palik E D[M]. Handbook of optical constants of solids(1998).

    [38] Zhao H X, Cheng P H, Ding Z Q et al. Refractive index sensor based on alternating grating and graphene composite structure[J]. Acta Optica Sinica, 41, 0728001(2021).

    [39] Vecchi G, Giannini V, Rivas J G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas[J]. Physical Review Letters, 102, 146807(2009).

    [40] Chen Q, Wen L, Yang X G et al. Structural color technology for high pixel density image sensors[J]. Acta Optica Sinica, 41, 0823010(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xinyue Liu, Qian Mai, Jiahao Yan, Baojun Li. Research on Optical Scattering of Individual Dielectric Particles Controlled by Gold Nano-Gratings[J]. Acta Optica Sinica, 2022, 42(14): 1429001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Scattering

    Received: Jan. 4, 2022

    Accepted: Feb. 14, 2022

    Published Online: Jul. 15, 2022

    The Author Email: Yan Jiahao (jhyan@jnu.edu.cn), Li Baojun (baojunli@jnu.edu.cn)

    DOI:10.3788/AOS202242.1429001

    Topics