Acta Optica Sinica, Volume. 42, Issue 14, 1429001(2022)
Research on Optical Scattering of Individual Dielectric Particles Controlled by Gold Nano-Gratings
[1] Jiang W, Hu H T, Deng Q et al. Temperature-dependent dark-field scattering of single plasmonic nanocavity[J]. Nanophotonics, 9, 3347-3356(2020).
[2] He J T, Wang M J, Zhang J L. Blue-green laser scattering and absorption properties of agglomerated core-shell cyanobacteria particles[J]. Acta Optica Sinica, 41, 1729001(2021).
[3] Tian X D, Zhou Y D, Thota S et al. Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy[J]. The Journal of Physical Chemistry C, 118, 13801-13808(2014).
[4] Zhang H Z, Li R S, Gao P F et al. Real-time dark-field light scattering imaging to monitor the coupling reaction with gold nanorods as an optical probe[J]. Nanoscale, 9, 3568-3575(2017).
[5] Hu M, Novo C, Funston A et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. Journal of Materials Chemistry, 18, 1949-1960(2008).
[6] Nicoletti O, de la Peña F, Leary R K et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles[J]. Nature, 502, 80-84(2013).
[7] Mayer K M, Hafner J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 111, 3828-3857(2011).
[8] Sannomiya T, Dermutz H, Hafner C et al. Electrochemistry on a localized surface plasmon resonance sensor[J]. Langmuir, 26, 7619-7626(2010).
[9] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 16, 1685-1706(2004).
[10] Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).
[11] Mayer K M, Lee S, Liao H W et al. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods[J]. ACS Nano, 2, 687-692(2008).
[12] Won R. Into the ‘Mie-tronic’ era[J]. Nature Photonics, 13, 585-587(2019).
[13] Sugimoto H, Okazaki T, Fujii M. Mie resonator color inks of monodispersed and perfectly spherical crystalline silicon nanoparticles[J]. Advanced Optical Materials, 8, 2000033(2020).
[14] Cihan A F, Curto A G, Raza S et al. Silicon Mie resonators for highly directional light emission from monolayer MoS2[J]. Nature Photonics, 12, 284-290(2018).
[15] Zhao Q, Zhou J, Zhang F L et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 12, 60-69(2009).
[16] Proust J, Bedu F, Gallas B et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 10, 7761-7767(2016).
[17] Lee K T, Taghinejad M, Yan J H et al. Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light[J]. ACS Photonics, 6, 2663-2670(2019).
[18] Holsteen A L, Raza S, Fan P Y et al. Purcell effect for active tuning of light scattering from semiconductor optical antennas[J]. Science, 358, 1407-1410(2017).
[19] Yan J H, Liu X Y, Mao B J et al. Individual Si nanospheres wrapped in a suspended monolayer WS2 for electromechanically controlled Mie-type nanopixels[J]. Advanced Optical Materials, 9, 2001954(2021).
[20] Liu X G, Kang J H, Yuan H T et al. Electrical tuning of a quantum plasmonic resonance[J]. Nature Nanotechnology, 12, 866-870(2017).
[21] Zhong Z H, Qian F, Wang D L et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices[J]. Nano Letters, 3, 343-346(2003).
[22] Tao L, Chen Z F, Li Z Y et al. Enhancing light-matter interaction in 2D materials by optical micro/nano architectures for high-performance optoelectronic devices[J]. InfoMat, 3, 36-60(2021).
[23] Li J X, Yu P, Zhang S et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 11, 3574(2020).
[24] Emboras A, Hoessbacher C, Haffner C et al. Electrically controlled plasmonic switches and modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 276-283(2015).
[25] Buchnev O, Podoliak N, Kaczmarek M et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 3, 674-679(2015).
[26] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium niobate microresonator[J]. Optics Letters, 44, 1214-1217(2019).
[27] Worthing P T, Barnes W L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating[J]. Applied Physics Letters, 79, 3035-3037(2001).
[28] Ye Z C, Zheng J, Sun S et al. Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances[J]. Plasmonics, 8, 555-559(2013).
[29] Wu Z, Nelson R L, Haus J W et al. Plasmonic electro-optic modulator design using a resonant metal grating[J]. Optics Letters, 33, 551-553(2008).
[30] Wang Y, Zhang X P. Ultrafast optical switching based on mutually enhanced resonance modes in gold nanowire gratings[J]. Nanoscale, 11, 17807-17814(2019).
[31] Zilio P, Sammito D, Zacco G et al. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Optics Express, 20, A476-A488(2012).
[32] Iqbal T, Ijaz M, Javaid M et al. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell[J]. Plasmonics, 14, 147-154(2019).
[33] Wang R, Li T, Shao X M et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Applied Materials & Interfaces, 7, 14471-14476(2015).
[34] Christ A, Zentgraf T, Kuhl J et al. Optical properties of planar metallic photonic crystal structures: experiment and theory[J]. Physical Review B, 70, 125113(2004).
[35] Gollmer D A, Lorch C, Schreiber F et al. Enhancing light absorption in organic semiconductor thin films by one-dimensional gold nanowire gratings[J]. Physical Review Materials, 1, 054602(2017).
[36] Chen Y, Zhou X D, Zhou J et al. Fano-resonance sensing mechanism of sub-wavelength dielectric grating-metal Ag thin film-periodic photonic crystal hybrid structure[J]. Chinese Journal of Lasers, 47, 0413001(2020).
[37] Palik E D[M]. Handbook of optical constants of solids(1998).
[38] Zhao H X, Cheng P H, Ding Z Q et al. Refractive index sensor based on alternating grating and graphene composite structure[J]. Acta Optica Sinica, 41, 0728001(2021).
[39] Vecchi G, Giannini V, Rivas J G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas[J]. Physical Review Letters, 102, 146807(2009).
[40] Chen Q, Wen L, Yang X G et al. Structural color technology for high pixel density image sensors[J]. Acta Optica Sinica, 41, 0823010(2021).
Get Citation
Copy Citation Text
Xinyue Liu, Qian Mai, Jiahao Yan, Baojun Li. Research on Optical Scattering of Individual Dielectric Particles Controlled by Gold Nano-Gratings[J]. Acta Optica Sinica, 2022, 42(14): 1429001
Category: Scattering
Received: Jan. 4, 2022
Accepted: Feb. 14, 2022
Published Online: Jul. 15, 2022
The Author Email: Yan Jiahao (jhyan@jnu.edu.cn), Li Baojun (baojunli@jnu.edu.cn)