Chinese Journal of Lasers, Volume. 49, Issue 10, 1002606(2022)
Aging Characteristics of Superhydrophobic Silicone Rubber Surfaces Etched by Femtosecond Laser
[1] Long J Y, Wu Y C, Gong D W et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 42, 0706002(2015).
[2] Yang T L, Qiu Z M, Xiao J J et al. Fabrication of superhydrophobic iron surface and its self-cleaning property[J]. Modern Chemical Industry, 38, 87-92(2018).
[3] Chen L, Huang Y T, Yang T et al. Laser-structured superhydrophobic/superoleophilic aluminum surfaces for efficient oil/water separation[J]. Environmental Science and Pollution Research International, 27, 43138-43149(2020).
[4] Li Y F, Gao W B, Shi L Z et al. Preparation of superhydrophobic coating and its corrosion resistance to Mg-Li alloy[J]. China Surface Engineering, 33, 1-9(2020).
[5] An Z L, Gu X X, Shen R C et al. Resistance to corona discharge of HTV silicone rubber surface layers fluorinated at different temperatures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 25, 729-740(2018).
[6] Buontempo R C, Dellallibera A A, Costa E C M et al. Electrical assessment of commercial 6.0-kV HTV silicone rubber for power insulation[J]. Measurement, 89, 114-119(2016).
[7] Li Z L, du B X, Yang Z R et al. Effects of crystal morphology on space charge transportation and dissipation of SiC/silicone rubber composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 24, 2616-2625(2017).
[8] Liu Y P, Wang Q S, Lü F C et al. Influence of UV radiation on HTV silicon rubber performance[J]. High Voltage Engineering, 36, 2634-2638(2010).
[9] Pan H H, Wang Z, Fan W Z et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser[J]. Chinese Journal of Lasers, 43, 0802002(2016).
[10] Lin C, Zhong M L, Fan P X et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese Journal of Lasers, 41, 0903007(2014).
[11] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).
[12] Zhou P Y, Peng Y Z, Huang Z M et al. Fabrication and droplet impact performance of superhydrophobic surfaces developed using nanosecond lasers[J]. Chinese Journal of Lasers, 47, 0402012(2020).
[13] Li J C, Chen Z D, Han D D et al. Laser processing of polyvinylidene fluoride with superhydrophobicity[J]. Chinese Journal of Lasers, 48, 0202002(2021).
[14] Chen L, Wang X, Yang T et al. Superhydrophobic micro-nano structures on silicone rubber by nanosecond laser processing[J]. Journal of Physics D: Applied Physics, 51, 445301(2018).
[15] Chen L, Ping H, Yang T et al. Icing performance of superhydrophobic silicone rubber surfaces by laser texturing[J]. Materials Research Express, 6, 1250e2(2020).
[16] Jiang H T, Li B C, Zhao B X et al. Evaluation of aging process of silicone rubber composite insulators with photothermal radiometry[J]. Journal of Physics D: Applied Physics, 51, 425304(2018).
[17] Gao Y F, Liang X D, Bao W N et al. Effects of liquids immersion and drying on the surface properties of HTV silicone rubber: characterisation by contact angle and surface physical morphology[J]. High Voltage, 4, 49-58(2019).
[18] Chang H W, Wan Z M, Chen X et al. Temperature and humidity effect on aging of silicone rubbers as sealing materials for proton exchange membrane fuel cell applications[J]. Applied Thermal Engineering, 104, 472-478(2016).
[19] Yong J L, Chen F, Huo J L et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 10, 3688-3696(2018).
[20] Fang Y, Yong J L, Chen F et al. Anisotropic superhydrophobicity: bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 5, 1701245(2018).
[21] Sarbada S, Shin Y C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 405, 465-475(2017).
[22] Chen L, Nie Q L, Hu T et al. Hydrophobic recovery of femtosecond laser processed silicone rubber insulator surfaces[J]. Journal of Applied Polymer Science, 138, 50835(2021).
[23] Chen L, Guo F, Yang T et al. Aging characteristics and self-healing properties of laser-textured superhydrophobic silicone rubber for composite insulators[J]. Polymer Degradation and Stability, 192, 109693(2021).
[24] Shaik M G, Karuppaiyan V. Investigation of surface degradation of aged high temperature vulcanized (HTV) silicone rubber insulators[J]. Energies, 12, 3769(2019).
[25] Wang G F, Zhou J, Wang M M et al. A superhydrophobic surface with aging resistance, excellent mechanical restorablity and droplet bounce properties[J]. Soft Matter, 16, 5514-5524(2020).
Get Citation
Copy Citation Text
Lie Chen, Qilu Nie, Fei Guo, Tao Hu, Yutao Wang, Dun Liu. Aging Characteristics of Superhydrophobic Silicone Rubber Surfaces Etched by Femtosecond Laser[J]. Chinese Journal of Lasers, 2022, 49(10): 1002606
Received: Dec. 1, 2021
Accepted: Jan. 14, 2022
Published Online: May. 9, 2022
The Author Email: Liu Dun (dun.liu@hbut.edu.cn)