Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1831(2025)
First-Principles Study on Basic Properties and Li-Ion Migration Mechanism of Halide Solid Electrolyte Li3InCl6
[1] [1] YU R, BAO J J, CHEN T T, et al. Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries[J]. Solid State Ion, 2017, 309: 15–21.
[2] [2] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303–4417.
[3] [3] YU R, DU Q X, ZOU B K, et al. Synthesis and characterization of perovskite-type (Li, Sr)(Zr, Nb)O3 quaternary solid electrolyte for all-solid-state batteries[J]. J Power Sources, 2016, 306: 623–629.
[4] [4] RANDAU S, WEBER D, KTZ O, et al. Benchmarking the performance of all-solid-state lithium batteries[J]. Nat Energy, 2018, 5: 259–270.
[5] [5] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229–252.
[6] [6] WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chem Soc Rev, 2020, 49(5): 1569–1614.
[7] [7] INAGUMA Y, CHEN L Q, ITOH M, et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Commun, 1993, 86(10): 689–693.
[8] [8] CHEN R J, LIANG W, ZHANG H Q, et al. Preparation and performance of novel LLTO thin film electrolytes for thin film lithium batteries[J]. Chin Sci Bull, 2012, 57(32): 4199–4204.
[9] [9] GOODENOUGH J B, HONG H Y, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater Res Bull, 1976, 11(2): 203–220.
[10] [10] SUBRAMANIAN M A, SUBRAMANIAN R, CLEARFIELD A. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)[J]. Solid State Ion, 1986, 18: 562–569.
[11] [11] HONG H Y. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Mater Res Bull, 1978, 13(2): 117–124.
[12] [12] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41): 7778–7781.
[13] [13] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7): A742.
[14] [14] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[15] [15] WEBER D, SENYSHYN A, WELDERT K S, et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chem Mater, 2016, 28: 5905–5915.
[16] [16] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew Chem Int Ed, 2008, 47(4): 755–758.
[17] [17] KRAFT M A, CULVER S P, CALDERON M, et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I)[J]. J Am Chem Soc, 2017, 139(31): 10909–10918.
[18] [18] BERNUY-LOPEZ C, MANALASTAS W Jr, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chem Mater, 2014, 26(12): 3610–3617.
[19] [19] HAN F D, ZHU Y Z, HE X F, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[20] [20] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): e1803075.
[21] [21] LIU B, WANG D, AVDEEV M, et al. High-throughput computational screening of Li-containing fluorides for battery cathode coatings[J]. ACS Sustainable Chem Eng, 2020, 8(2): 948–957.
[22] [22] PARK K H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2020, 5(2): 533–539.
[23] [23] KIM S Y, KAUP K, PARK K H, et al. Lithium ytterbium-based halide solid electrolytes for high voltage all-solid-state batteries[J]. ACS Mater Lett, 2021, 3(7): 930–938.
[24] [24] HELM B, SCHLEM R, WANKMILLER B, et al. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3–xIn1–xZrxCl6 (0≤x≤0.5)[J]. Chem Mater, 2021, 33(12): 4773–4782.
[25] [25] SHI X M, ZENG Z C, ZHANG H T, et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li–Se battery[J]. Small Meth, 2021, 5(11): 2101002.
[26] [26] LI X N, LIANG J W, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427–16432.
[27] [27] LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ Sci, 2019, 12(9): 2665–2671.
[28] [28] WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci Adv, 2021, 7(37): eabh1896.
[29] [29] WANG K, REN Q Y, GU Z Q, et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries[J]. Nat Commun, 2021, 12(1): 4410.
[30] [30] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.
[31] [31] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. J Chem Phys, 1996, 105(22): 9982–9985.
[32] [32] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188–5192.
[33] [33] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals[J]. J Chem Phys, 2006, 125(22): 224106.
[34] [34] HENKELMAN G, JNSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. 2000, 113(22): 9978–9985.
[37] [37] BECKSTEIN O, KLEPEIS J E, HART G L W, et al. First-principles elastic constants and electronic structure of -Pt2Si and PtSi[J]. Phys Rev B, 2001, 63(13): 134112.
[38] [38] BORN M. On the stability of crystal lattices. I[J]. Math Proc Camb Phil Soc, 1940, 36(2): 160–172.
[39] [39] Wu Z J, Zhao E J, Xiang H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B, 2007, 76(5): 054115.
[40] [40] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proc Phys Soc A, 1952, 65(5): 349–354.
[41] [41] QIU J H, WU M S, LUO W W, et al. Insights into bulk properties and transport mechanisms in new ternary halide solid electrolytes: First-principles calculations[J]. J Phys Chem C, 2021, 125(42): 23510–23520.
[42] [42] WU M S, XU B, LEI X L, et al. Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li3OCl: Insights from first principles calculations[J]. J Mater Chem A, 2018, 6(3): 1150–1160.
[43] [43] DENG Z, WANG Z B, CHU I H, et al. Elastic properties of alkali superionic conductor electrolytes from first principles calculations[J]. J Electrochem Soc, 2016, 163(2): A67–A74.
[44] [44] WANG Z Q, WU M S, LIU G, et al. Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations[J]. Int J Electrochem Sci, 2014, 9(2): 562–568.
[45] [45] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Lond Edinb Dublin Philos Mag J Sci, 1954, 45(367): 823–843.
[46] [46] MORELLI D T, SLACK G A. High lattice thermal conductivity solids[M]//High Thermal Conductivity Materials. New York: Springer- Verlag, 2006: 37–68.
[47] [47] MORELLI D T, HEREMANS J P. Thermal conductivity of germanium, silicon, and carbon nitrides[J]. Appl Phys Lett, 2002, 81(27): 5126–5128.
[48] [48] MORELLI D T, JOVOVIC V, HEREMANS J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors[J]. Phys Rev Lett, 2008, 101(3): 035901.
[49] [49] FENG J, XIAO B, WAN C L, et al. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore[J]. Acta Mater, 2011, 59(4): 1742–1760.
[50] [50] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: Applications to III-nitrides[J]. J Appl Phys, 2004, 95(8): 3851–3879.
[51] [51] FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids[J]. Rev Mod Phys, 2014, 86(1): 253–305.
Get Citation
Copy Citation Text
QIU Jiahao, SU Lei, ZHANG Jiaying, WU Musheng, SUN Baozhen, OUYANG Chuying. First-Principles Study on Basic Properties and Li-Ion Migration Mechanism of Halide Solid Electrolyte Li3InCl6[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1831
Special Issue:
Received: Dec. 30, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: