Semiconductor Optoelectronics, Volume. 45, Issue 2, 261(2024)
Camouflaged Target Recognition Technology Based on Hyperspectral Unmixing
[5] [5] Zhao J, Zhou B, Wang G, et al. Camouflage target recognition based on dimension reduction analysis of hyperspectral image regions[J]. Photonics, 2022, 9(9):9090640.
[8] [8] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Process Mag., 2002, 19(1): 44-57.
[9] [9] Thouvenin P A, Dobigeon N, Tourneret J Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[J]. IEEE Trans. Signal Process., 2015, 64(2): 525-538.
[10] [10] Drumetz L, Veganzones M A, Henrot S, et al. Blind hyperspectral unmixing using an Extended Linear Mixing Model to address spectral variability[J]. IEEE Trans. Image Process., 2016, 25(8): 3890-3905.
[11] [11] Imbiriba T, Borsoi R A, Bermudez J. Generalized linear mixing model accounting for endmember variability[C]//2018 IEEE Inter. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2018: 1862-1866.
[12] [12] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34(11): 2274-2282.
[13] [13] Borsoi R A, Imbiriba T, Bermudez J. A data dependent multiscale model for hyperspectral unmixing with spectral variability[J]. IEEE Trans. Image Process., 2020, 29:3638-3651.
[15] [15] Zhang S, Li J, Li H, et al. Spectral-spatial weighted sparse regression for hyperspectral image unmixing[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(6): 1-12.
[16] [16] Zhang S, Li J, Plaza J A, et al. Spatial weighted sparse regression for hyperspectral image unmixing[C]// 2017 IEEE Inter. Geoscience and Remote Sensing Symposium,2017: 225-228.
[17] [17] Ma Y, Fan G, Jin Q, et al. Hyperspectral anomaly detection via integration of feature extraction and background purification[J]. IEEE Geosci. Remote Sens. Lett., 2021,18(8): 1436-1440.
[20] [20] Giampouras P V, Themelis K E, Rontogiannis A A, et al.Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing[J]. IEEE Trans. on Geosci. Remote Sens., 2016, 54(8): 4775-4789.
[21] [21] Paatero P, Tapper U. Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2):111-126.
[23] [23] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3): 529-545.
[24] [24] Veganzones M A, Drumetz L, Tochon G, et al. A new extended linear mixing model to address spectral variability[C]// 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), 2014: 1-4.
Get Citation
Copy Citation Text
WANG Juntong, YANG Huadong. Camouflaged Target Recognition Technology Based on Hyperspectral Unmixing[J]. Semiconductor Optoelectronics, 2024, 45(2): 261
Category:
Received: Dec. 15, 2023
Accepted: --
Published Online: Aug. 14, 2024
The Author Email: