Semiconductor Optoelectronics, Volume. 45, Issue 2, 261(2024)

Camouflaged Target Recognition Technology Based on Hyperspectral Unmixing

WANG Juntong and YANG Huadong
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [5] [5] Zhao J, Zhou B, Wang G, et al. Camouflage target recognition based on dimension reduction analysis of hyperspectral image regions[J]. Photonics, 2022, 9(9):9090640.

    [8] [8] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Process Mag., 2002, 19(1): 44-57.

    [9] [9] Thouvenin P A, Dobigeon N, Tourneret J Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[J]. IEEE Trans. Signal Process., 2015, 64(2): 525-538.

    [10] [10] Drumetz L, Veganzones M A, Henrot S, et al. Blind hyperspectral unmixing using an Extended Linear Mixing Model to address spectral variability[J]. IEEE Trans. Image Process., 2016, 25(8): 3890-3905.

    [11] [11] Imbiriba T, Borsoi R A, Bermudez J. Generalized linear mixing model accounting for endmember variability[C]//2018 IEEE Inter. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2018: 1862-1866.

    [12] [12] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34(11): 2274-2282.

    [13] [13] Borsoi R A, Imbiriba T, Bermudez J. A data dependent multiscale model for hyperspectral unmixing with spectral variability[J]. IEEE Trans. Image Process., 2020, 29:3638-3651.

    [15] [15] Zhang S, Li J, Li H, et al. Spectral-spatial weighted sparse regression for hyperspectral image unmixing[J]. IEEE Trans. Geosci. Remote Sens., 2018, 56(6): 1-12.

    [16] [16] Zhang S, Li J, Plaza J A, et al. Spatial weighted sparse regression for hyperspectral image unmixing[C]// 2017 IEEE Inter. Geoscience and Remote Sensing Symposium,2017: 225-228.

    [17] [17] Ma Y, Fan G, Jin Q, et al. Hyperspectral anomaly detection via integration of feature extraction and background purification[J]. IEEE Geosci. Remote Sens. Lett., 2021,18(8): 1436-1440.

    [20] [20] Giampouras P V, Themelis K E, Rontogiannis A A, et al.Simultaneously sparse and low-rank abundance matrix estimation for hyperspectral image unmixing[J]. IEEE Trans. on Geosci. Remote Sens., 2016, 54(8): 4775-4789.

    [21] [21] Paatero P, Tapper U. Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2):111-126.

    [23] [23] Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(3): 529-545.

    [24] [24] Veganzones M A, Drumetz L, Tochon G, et al. A new extended linear mixing model to address spectral variability[C]// 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), 2014: 1-4.

    Tools

    Get Citation

    Copy Citation Text

    WANG Juntong, YANG Huadong. Camouflaged Target Recognition Technology Based on Hyperspectral Unmixing[J]. Semiconductor Optoelectronics, 2024, 45(2): 261

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 15, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2023121501

    Topics